Teaching Mathematics and Statistics in Sciences, IPA HU-SRB/0901/221/088

Biostatistics

Author: Krisztina Boda PhD

Statistical estimation, confidence intervals

The central limit theorem

Distribution of sample means

http://onlinestatbook.com/stat sim/sampling dist/index.htm|

The population is not normally distributed

The central limit theorem

- If the sample size n is large (say, at least 30), then the population of all possible sample means approximately has a normal distribution with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$ no matter what probability
describes the population sampled

The prevalence of normal distribution

- Since real-world quantities are often the balanced sum of many unobserved random events, this theorem provides a partial explanation for the prevalence of the normal probability distribution.

Tha standard error of mean (SE or SEM)

 is called the standard error of mean- Meaning: the dispersion of the sample means around the (unknown) population mean.

Calculation of the standard error from the standard deviation when σ is unknown

- Given $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ statistical sample, the stadard error can be calculated by

$$
S E=\frac{S D}{\sqrt{n}}=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n(n-1)}}
$$

- It expresses the dispersion of the sample means around the (unknown) population mean.

Mean-dispersion diagrams

- Mean + SD
- Mean + SE
- Mean + 95\% CI

Mean $\pm 95 \% \mathrm{Cl}$
Mean \pm SD

Statistical estimation

Statistical estimation

- A parameter is a number that describes the population (its value is not known).
- For example:
- μ and σ are parameters of the normal distribution $N(\mu, \sigma)$
- n, p are parameters of the binomial distribution
- λ is parameter of the Poisson distribution
- Estimation: based on sample data, we can calculate a number that is an approximation of the corresponding parameter of the population.
- A point estimate is a single numerical value used to approximate the corresponding population parameter.
- For example, the sample mean is an estimation of the population's mean, μ.

$$
\begin{gathered}
\bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}=\frac{\sum_{i=1}^{n} x_{i}}{n}
\end{gathered} \text { approximates } \mu
$$

Interval estimate, confidence interval

- Interval estimate: a range of values that we think includes the true value of the population parameter (with a given level of certainty).
- Confidence interval: an interval which contains the value of the (unknown) population parameter with high probability.
- The higher the probability assigned, the more confident we are that the interval does, in fact, include the true value.
- The probability assigned is the confidence level (generally: 0.90, 0.95, 0.99)

Interval estimate, confidence interval (cont.)

- „high" probability: the probability assigned is the confidence level (generally: $0.90,0.95,0.99$).
- „small" probability: the „error" of the estimation (denoted by α) according to the confidence level is

$$
1-0.90=0.1,1-0.95=0.05,1-0.99=0.01
$$

- The most often used confidence level is
95\% (0.95),
- so the most often used value for α is

$$
\alpha=0.05
$$

The confidence interval is based on the concept of repetition of the study under consideration

- If the study were to be repeated 100 times, of the 100 resulting 95\% confidence intervals, we would expect 95 of these to include the population parameter.

http://www.kuleuven.ac.be/ucs/java/index.htm

The distribution of the population

The histogram, mean and $95 \% \mathrm{Cl}$ of a sample drawn from the population

The histogram, mean and $95 \% \mathrm{Cl}$ of a 2 nd sample drawn from the population

applet 5a-ILo_vestac File Example Window Help														
Confidence intervals (mean) 1														

The histogram, mean and $95 \% \mathrm{Cl}$ of a 3rd sample drawn from the population

The histogram, mean and $95 \% \mathrm{Cl}$ of 100 samples drawn from the population

The histogram, mean and $95 \% \mathrm{Cl}$ of another 100 samples drawn from the population

Settings: $\mathbf{1 0 0 0}$ samples

Result of the last 100

Formula of the confidence interval

 for the population's mean μ when σ is known- It can be shown that

$$
\left(\overline{\mathrm{x}}-u_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right) \quad \bar{x}+u_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right)\right.
$$

is a (1- α) 100% confidence interval for μ.

- $\mathrm{u}_{\alpha / 2}$ is the $\alpha / 2$ critical value of the standard normal distribution, it can be found in standard normal distribution table
for $\alpha=0.05 u_{\alpha / 2}=1.96$
for $\alpha=0.01 u_{\alpha / 2}=2.58$
- $95 \% \mathrm{Cl}$ for the population's mean

$$
\left(\bar{x}-1.96 \frac{\sigma}{\sqrt{n}}, \quad \bar{x}+1.96 \frac{\sigma}{\sqrt{n}}\right)
$$

The standard error of mean (SE or SEM)

- σis called the standard error of mean

■ Meaning: the dispersion of the sample means around the (unknown) population's mean.

- When σ is unknown, the standard error of mean can be estimated from the sample by: $\underline{S D}$
n

$$
\frac{\sigma}{\sqrt{n}} \approx \frac{S D}{\sqrt{n}}=\frac{\text { standard deviation }}{\sqrt{n}}
$$

Example

- We wish to estimate the average number of heartbeats per minute for a certain population
- Based on the data of 36 patients, the sample mean was 90, and the sample standard deviation was 15.5 (supposed to be known). Assuming that the heart-rate is normally distributed in the population, we can calculate a 95% confidence interval for the population mean:
- $\alpha=0.05, u_{\alpha / 2}=1.96, \sigma=15.5$
- The lower limit

$$
90-1.96 \cdot 15.5 / \sqrt{ } 36=90-1.96 \cdot 15.5 / 6=90-5.063=84.937
$$

- The upper limit

$$
90+1.96 \cdot 15.5 / \sqrt{ } 36=90+1.96 \cdot 15.5 / 6=90+5.063=95.064
$$

- The 95% confidence interval is

$$
\text { - } \quad(84.94,95.06)
$$

- We can be 95% confident from this study that the true mean heart-rate among all such patients lies somewhere in the range 84.94 to 95.06 , with 90 as our best estimate. This interpretation depends on the assumption that the sample of 36 patients is representative of all patients with the disease.

Formula of the confidence interval for the population's mean when σ is unknown

- When σ is unknown, it can be estimated by the sample SD (standard deviation). But, if we place the sample SD in the place of $\sigma, u_{\alpha / 2}$ is no longer valid, it also must be replace by $\mathrm{t}_{\mathrm{\alpha} / 2}$. So

$$
\left(\overline{\mathrm{x}}-t_{\alpha / 2} \frac{S D}{\sqrt{n}}, \quad \bar{x}+t_{\alpha / 2} \frac{S D}{\sqrt{n}}\right)
$$

is a (1- α)100 confidence interval for μ.

- $t_{\alpha / 2}$ is the two-tailed α critical value of the Student's t statistic with $n-1$ degrees of freedom (see next slide)

t-distributions (Student's t-distributions)

Probability Density Function $y=$ student ($x ; 200$)

df=200

The Student's t-distribution

Two-sided alfa							$\text { t: } \longdiv { 2 . 1 7 8 8 1 3 } \text { 䙷 }$
df	0.2	0.1	0.05	0.02	0.01	0.001	
1	3.078	6.314	12.706	31.821	63.657	636.619	
2	1.886	2.920	4.303	6.965	9.925	31.599	p: 0.05 囫
3	1.638	2.353	3.182	4.541	5.841	12.924	p. 0.05 -
4	1.533	2.132	2.776	3.747	4.604	8.610	Density Function: Distribution Function:
5	1.476	2.015	2.571	3.365	4.032	6.869	
6	1.440	1.943	2.447	3.143	3.707	5.959	A
7	1.415	1.895	2.365	2.998	3.499	5.408	¢
8	1.397	1.860	2.306	2.896	3.355	5.041	
9	1.383	1.833	2.262	2.821	3.250	4.781	
10	1.372	1.812	2.228	2.764	3.169	4.587	
11	1.363	1.796	2.201	2.718	3.106	4.437	
12	1.356	1.782	2.179	2.681	3.055	4.318	
13	1.350	1.771	2.160	2.650	3.012	4.221	
14	1.345	1.761	2.145	2.624	2.977	4.140	
15	1.341	1.753	2.131	2.602	2.947	4.073	
16	1.337	1.746	2.120	2.583	2.921	4.015	
17	1.333	1.740	2.110	2.567	2.898	3.965	For $\alpha=0.05$ and $d f=12$,
18	1.330	1.734	2.101	2.552	2.878	3.922	the critical value is $t=2179$
19	1.328	1.729	2.093	2.539	2.861	3.883	the critical value is $t_{\alpha / 2}=2.179$
20	1.325	1.725	2.086	2.528	2.845	3.850	
21	1.323	1.721	2.080	2.518	2.831	3.819	
22	1.321	1.717	2.074	2.508	2.819	3.792	
23	1.319	1.714	2.069	2.500	2.807	3.768	
24	1.318	1.711	2.064	2.492	2.797	3.745	
25	1.316	1.708	2.060	2.485	2.787	3.725	
26	1.315	1.706	2.056	2.479	2.779	3.707	
27	1.314	1.703	2.052	2.473	2.771	3.690	
28	1.313	1.701	2.048	2.467	2.763	3.674	
29	1.311	1.699	2.045	2.462	2.756	3.659	
30	1.310	1.697	2.042	2.457	2.750	3.646	
∞	1.282	1.645	1.960	2.326	2.576	3.291	

Student's t-distribution

Student's t-distribution

Student's t-distribution

Student's t-distribution

Student's \boldsymbol{t}-distribution table

Two sided alfa

Degrees of freedom	0.2	0.1	0.05	0.02	0.01
1	3.077683537	6.313752	12.7062	31.82052	63.65674
2	1.885618083	2.919986	4.302653	6.964557	9.924843
3	1.637744352	2.353363	3.182446	4.540703	5.840909
4	1.533206273	2.131847	2.776445	3.746947	4.604095
5	1.475884037	2.015048	2.570582	3.36493	4.032143
6	1.439755747	1.94318	2.446912	3.142668	3.707428
7	1.414923928	1.894579	2.364624	2.997952	3.499483
8	1.39681531	1.859548	2.306004	2.896459	3.355387
9	1.383028739	1.833113	2.262157	2.821438	3.249836
10	1.372183641	1.812461	2.228139	2.763769	3.169273
11	1.363430318	1.795885	2.200985	2.718079	3.105807

Student's t-distribution table

degrees of freedom	0.2	0.1	$\mathbf{0 . 0 5}$	0.02	0.01	0.001
1	3.077683537	6.313752	$\mathbf{1 2 . 7 0 6 2}$	31.82052	63.65674	636.6192
2	1.885618083	2.919986	$\mathbf{4 . 3 0 2 6 5 3}$	6.964557	9.924843	31.59905
3	1.637744352	2.353363	$\mathbf{3 . 1 8 2 4 4 6}$	4.540703	5.840909	12.92398
4	1.533206273	2.131847	$\mathbf{2 . 7 7 6 4 4 5}$	3.746947	4.604095	8.610302
5	1.475884037	2.015048	$\mathbf{2 . 5 7 0 5 8 2}$	3.36493	4.032143	6.868827
6	1.439755747	1.94318	$\mathbf{2 . 4 4 6 9 1 2}$	3.142668	3.707428	5.958816
7	1.414923928	1.894579	$\mathbf{2 . 3 6 4 6 2 4}$	2.997952	3.499483	5.407883
\ldots						
100	1.290074761	1.660234	$\mathbf{1 . 9 8 3 9 7 1}$	2.364217	2.625891	3.390491
\ldots						
500	1.283247021	1.647907	$\mathbf{1 . 9 6 4 7 2}$	2.333829	2.585698	3.310091
\ldots						
1000000	1.281552411	1.644855	$\mathbf{1 . 9 5 9 9 6 6}$	2.326352	2.575834	3.290536

Example 1.

- We wish to estimate the average number of heartbeats per minute for a certain population.
- The mean for a sample of 13 subjects was found to be 90, the standard deviation of the sample was $S D=15.5$. Supposed that the population is normally distributed the 95% confidence interval for μ :
- $\alpha=0.05, \mathrm{SD}=15.5$
- Degrees of freedom: $\mathrm{df}=\mathrm{n}-1=13-1=12$
- $\mathrm{t}_{\alpha / 2}=2.179$
- The lower limit is

$$
90-2.179 \cdot 15.5 / \sqrt{ } 13=90-2.179 \cdot 4.299=90-9.367=80.6326
$$

- The upper limit is

$$
90+2.179 \cdot 15.5 / \sqrt{ } 13=90+2.179 \cdot 4.299=90+9.367=99.367
$$

- The 95% confidence interval for the population mean is (80.63, 99.36)
- It means that the true (but unknown) population means lies it the interval $(80.63,99.36)$ with 0.95 probability. We are 95% confident the true mean lies in that interval.

Example 2.

- We wish to estimate the average number of heartbeats per minute for a certain population.
- The mean for a sample of 36 subjects was found to be 90, the standard deviation of the sample was $S D=15.5$. Supposed that the population is normally distributed the 95% confidence interval for μ :
- $\alpha=0.05, S D=15.5$
- Degrees of freedom: $\mathrm{df}=\mathrm{n}-1=36-1=35$
- $\mathrm{t} \alpha / 2=2.0301$
- The lower limit is

$$
90-2.0301 \cdot 15.5 / \sqrt{ } 36=90-2.0301 \cdot 2.5833=90-5.2444=84.755
$$

- The upper limit is

$$
90+2.0301 \cdot 15.5 / \sqrt{ } 36=90+2.0301 \cdot 2.5833=90+5.2444=95.24
$$

- The 95% confidence interval for the population mean is (84.76, 95.24)
- It means that the true (but unknown) population means lies it the interval (84.76, 95.24) with 0.95 probability. We are 95% confident that the true mean lies in that interval.

Comparison

- We wish to estimate the average number of heartbeats per minute for a certain population.
- The mean for a sample of 13 subjects was found to be 90, the standard deviation of the sample was $\mathrm{SD}=15.5$. Supposed that the population is normally distributed the 95% confidence interval for μ :
- $\alpha=0.05, S D=15.5$
- Degrees of freedom: $\mathrm{df}=\mathrm{n}-1=13-1=12$
- $\mathrm{t}_{\alpha / 2}=2.179$
- The lower limit is

$$
\begin{aligned}
& 90-2.179 \cdot 15.5 / \sqrt{ } 13=90-2.179 \cdot 4.299=90- \\
& 9.367=80.6326
\end{aligned}
$$

- The upper limit is

$$
\begin{gathered}
90+2.179 \cdot 15.5 / \sqrt{ } 13=90+2.179 \\
\cdot 4.299=90+9.367=99.367
\end{gathered}
$$

- The 95% confidence interval for the population mean is
(80.63, 99.36)
- We wish to estimate the average number of heartbeats per minute for a certain population.
- The mean for a sample of 36 subjects was found to be 90, the standard deviation of the sample was $S D=15.5$. Supposed that the population is normally distributed the 95% confidence interval for μ :
- $\alpha=0.05, S D=15.5$
- Degrees of freedom: $\mathrm{df}=\mathrm{n}-1=36-1=35$
- $t \alpha / 2=2.0301$
- The lower limit is

$$
\begin{gathered}
90-2.0301 \cdot 15.5 / \sqrt{ } 36=90-2.0301 \\
\cdot 2.5833=90-5.2444=84.755
\end{gathered}
$$

- The upper limit is

$$
\begin{gathered}
90+2.0301 \cdot 15.5 / \sqrt{ } 36=90+2.0301 \\
\cdot 2.5833=90+5.2444=95.24
\end{gathered}
$$

- The 95% confidence interval for the population mean is
(84.76, 95.24)

Example

Descriptives

Body height			Statistic	Std. Error
	Mean	Lower Bound Upper Bound	170.3908	. 91329
	95\% Confidence		168.5752	
	Interval for Mean		172.2064	
	5\% Trimmed Mean		170.2886	
	Median		170.0000	
	Variance		72.566	
	Std. Deviation		8.51859	
	Minimum		152.00	
	Maximum		196.00	
	Range		44.00	
	Interquartile Range		11.0000	
	Skewness		. 274	. 258
	Kurtosis		. 270	. 511

Presentation of results

Table 2|Primary and secondary outcomes according to treatment in the 502 randomised children according to allocation to new treatment (oral co-amoxiclav) or standard treatment (intravenous ceftriaxone followed by oral co-amoxiclav). Figures are means (SD) unless specified otherwise

Parameter	New treatment ($n=244$)	Standard treatment ($\mathrm{n}=258$)	Mean difference (95\% Cl)
Shortterm outcomes			
Time to defervescence (hours)	36.9 (19.7) ($\mathrm{n}=241$)	34.3 (20) ($\mathrm{n}=253$)	2.6 (-0.9 to 6)
White cell count ($\left.\times 10^{9} /\right)^{*}$	9.8 (3.5) ($\mathrm{n}=230$)	9.5 (3.1) ($\mathrm{n}=243$)	0.3 (-0.3 to 0.9)
Neutrophils ($\left.\times 10^{9}, 1\right)^{*}$	3.0 (2.2) ($n=207$)	2.8 (1.9) ($\mathrm{n}=217$)	$0.2(-0.2$ to 0.6)
Erythrocyte sedimentation rate (mm in first hourì*	50.8 (32) ($\mathrm{n}=170$)	52.6 (27.9) ($\mathrm{n}=168$)	-1.8 (-8.2 to 4.7)
C reactive protein (img/0* \dagger	9.3 (20.9) ($\mathrm{n}=235$)	8.2 (15.4) ($\mathrm{n}=251)$	$1.1(-2.6$ to 4.1$)$
Sterie urine	185/186 (99.45\%)	203/204 (99.5\%)	-0.05\% (-1.5\% to 1.4\%)
Primary outcome			
Scaron renal scanat 12 months	27/197 (13.7\%)	36/203 (17.7\%)	-4\% (-11.1\%to 3.1\%)

*Parampters ohtained 72 hours after start of antihiot ir treatment
\dagger Ratib between obtained value and upper limit of normal relerence values for each laboratory.

BMJ | ONLINE FIRST | bmj.com

Antibiotic treatment for pyelonephritis in children: multicentre randomised controlled non-inferiority trial

Giovanni Montini, Antonella Toffolo, Pietro Zucchetta, Roberto Dall'Amico Daniela Gobber, Alessandro Calderan, Francesca Maschio, Luigi Pavanello, Pier Paolo Molinari, Dante Scorrano, Sergio Zanchetta, Waiburga Cassar, Paolo Brisotto, Andrea Corsini, Stefano Sartori, Liviana Da Dalt, Luisa Murer
and Graziella Zacchello

BMJ 2007; 335;386--; originally published online 4 Jul 2007; doi: $10.1136 / \mathrm{bmj} .39244 .692442 .55$

Review questions and problems

- The central limit theorem
- The meaning and the formula of the standard error of mean (SE)
- The meaning of a confidence interval
- The confidence level
- Which is wider, a 95% or a 99% confidence interval?
- Calculation of the confidence interval for the population mean in case of unknown standard deviation
- Studenst's t-distribution
- In a study, systolic blood pressure of 16 healthy women was measured. The mean was 121, the standard deviation was $\mathrm{SD}=8.2$. Calculate the standard error.
- In a study, systolic blood pressure of 10 healthy women was measured. The mean was 119, the standard error 0.664 . Calculate the 95% confidence interval for the population mean!
$\left(\alpha=0.05, t_{\text {table }}=2.26\right)$.

