Teaching Mathematics and Statistics in Sciences, IPA HU-SRB/0901/221/088 - 2011

Biostatistics

Author: Krisztina Boda PhD

Correlation, linear regression

Scatterplot
 Relationship between two continouous variables

Student	Hours studied	Grade
Jane	8	70
Joe	10	80
Sue	12	75
Pat	19	90
Bob	20	85
Tom	25	95

Scatterplot
 Relationship between two continouous variables

Student	Hours studied	Grade
Jane	8	70
Joe	10	80
Sue	12	75
Pat	19	90
Bob	20	85
Tom	25	95

Scatterplot Other examples

Example II.

- Imagine that 6 students are given a battery of tests by a vocational guidance counsellor with the results shown in the following table:

	STUDENT	RETAIL	THEATER	MATH	LANGUAGE
1	Pat	51.00	30.00	525.00	550.00
2	Sue	55.00	60.00	515.00	535.00
3	Inez	58.00	90.00	510.00	535.00
4	Arnie	63.00	50.00	495.00	520.00
5	Gene	85.00	30.00	430.00	455.00
6	Bob	95.00	90.00	400.00	420.00

- Variables measured on the same individuals are often related to each other.

Let us draw a graph called scattergram to investigate relationships.

- Scatterplots show the relationship between two quantitative variables measured on the same cases.
- In a scatterplot, we look for the direction, form, and strength of the relationship between the variables. The simplest relationship is linear in form and reasonably strong.
- Scatterplots also reveal deviations from the overall
 pattern.

Creating a scatterplot

- When one variable in a scatterplot explains or predicts the other, place it on the x -axis.
- Place the variable that responds to the predictor on the y-axis.
- If neither variable explains or responds to the other, it does not matter which axes you assign them to.

Possible relationships

positive correlation

negative correlation

no correlation

Describing linear relationship with number: the coefficient of correlation (r).

 Also called Pearson coefficient of correlation- Correlation is a numerical measure of the strength of a linear association.
- The formula for coefficient of correlation treats x and y identically. There is no distinction between explanatory and response variable.
- Let us denote the two samples by $x_{1}, x_{2}, \ldots x_{n}$ and $y_{1}, y_{2}, \ldots y_{n}$,
the coefficient of correlation can be computed according to the following formula

$$
r=\frac{n \cdot \sum_{i=1}^{n} x_{i} y_{i}-\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{\sqrt{\left(n \cdot \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right)\left(n \cdot \sum_{i=1}^{n} y_{i}^{2}-\left(\sum_{i=1}^{n} y_{i}\right)^{2}\right)}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}
$$

Karl Pearson

- Karl Pearson (27 March 1857 - 27 April 1936) established the discipline of mathematical statistics. http://en.wikipedia.org /wiki/Karl_Pearson

Properties of r

- Correlations are between -1 and +1 ; the val between -1 and 1, either extreme indicates association.

$$
-1 \leq r \leq 1 \text {. }
$$

- a) If r is near +1 or -1 we say that we have \mid
- b) If $r=1$, we say that there is perfect positive
 If $r=-1$, then we say that there is a perfect negative correlation.
- c) A correlation of zero indicates the absence of linear association. When there is no tendency for the points to lie in a straight line, we say that there is no correlation ($r=0$) or we have low correlation (r is near 0).

Calculated values of r

positive correlation, $\mathbf{r}=\mathbf{0 . 9 9 8 9}$

negative correlation, $\mathbf{r = - 0 . 9 9 9 3}$

no correlation, $\mathbf{r}=-\mathbf{0 . 2 1 5 7}$

Scatterplot Other examples

$$
r=0.018
$$

Correlation and causation

- a correlation between two variables does not show that one causes the other.

Correlation by eye

http://onlinestatbook.com/stat sim/reg by eye/index.htm|

- This applet lets you estimate the regression line and to guess the value of Pearson's correlation.
- Five possible values of Pearson's correlation are listed. One of them is the correlation for the data displayed in the scatterplot. Guess which one it is. To see the correct value, click on the "Show r" button.

Effect of outliers

- Even a single outlier can change the correlation substantially.
- Outliers can create
- an apparently strong correlation where none would be found otherwise,
- or hide a strong correlation by making it appear to be weak.

Correlation and linearity

- Two variables may be closely related and still have a small correlation if the form of the relationship is
 not linear.

Correlation and linearity

Four sets of data with the same correlation of 0.816 http://en.wikipedia.org/wiki/Correlation_and_dependence

Coefficient of determination

- The square of the correlation coefficient multiplied by 100 is called the coefficient of determination.
- It shows the percentages of the total variation explained by the linear regression.
- Example.
- The correlation between math aptitude and language aptitude was found $r=0,9989$. The coefficient of determination, $r^{2}=0.917$. So 91.7% of the total variation of Y is caused by its linear relationship with X.

When is a correlation „high"?

- What is considered to be high correlation varies with the field of application.
- The statistician must decide when a sample value of r is far enough from zero, that is, when it is sufficiently far from zero to reflect the correlation in the population.

Testing the significance of the coefficient of correlation

- The statistician must decide when a sample value of r is far enough from zero to be significant, that is, when it is sufficiently far from zero to reflect the correlation in the population.
- (details: lecture 8.)

Prediction based on linear correlation: the linear regression

- When the form of the relationship in a scatterplot is linear, we usually want to describe that linear form more precisely with numbers.
- We can rarely hope to find data values lined up perfectly, so we fit lines to scatterplots with a method that compromises among the data values. This method is called the method of least squares.
- The key to finding, understanding, and using least squares lines is an understanding of their failures to fit the data; the residuals.

Residuals, example 1.

Residuals, example 2.

Residuals. examole 3.

Scatterplot (corr 5v*6c)
THEATER $=112.7943-0.1137^{*} x$

Prediction based on linear correlation: the linear regression

- A straight line that best fits the data:

$$
y=b x+a \text { or } y=a+b x
$$

is called regression line

- Geometrical meaning of \boldsymbol{a} and \boldsymbol{b}.
- b : is called regression coefficient, slope of the best-fitting line or regression line;
- a: y-intercept of the regression line.
- The principle of finding the values \boldsymbol{a} and \boldsymbol{b}, given $x_{1}, x_{2}, \ldots x_{\mathrm{n}}$ and $y_{1}, y_{2}, \ldots y_{n}$.
- Minimising the sum of squared residuals, i.e.

$$
\Sigma\left(y_{i}-\left(a+b x_{i}\right)\right)^{2} \rightarrow \min
$$

Residuals. examole 3.

Scatterplot (corr 5v*6c)
THEATER $=112.7943-0.1137^{*} x$

The general equation of a line is $\mathrm{y}=\mathrm{a}+\mathrm{b} \mathrm{x}$. We would like to find the values of a and b in such a way that the resulting line be the best fitting line. Let's suppose we have n pairs of $\left(x_{i}, y_{i}\right)$ measurements. We would like to approximate y_{i} by values of a line. If x_{i} is the independent variable, the value of the line is $a+b x_{i}$.

We will approximate y_{i} by the value of the line at x_{i}, that is, by $a+b x_{i}$. The approximation is good if the differences $y_{i}-\left(a+b \cdot x_{i}\right)$ are small. These differences can be positive or negative, so let's take its square and summarize:

$$
\sum_{i=1}^{n}\left(y_{i}-\left(a+b \cdot x_{i}\right)\right)^{2}=S(a, b)
$$

This is a function of the unknown parameters a and b, called also the sum of squared residuals. To determine a and b : we have to find the minimum of $S(a, b)$. In order to find the minimum, we have to find the derivatives of S, and solve the equations
$\frac{\partial S}{\partial a}=0, \quad \frac{\partial S}{\partial b}=0$

The solution of the equation-system gives the formulas for b and a :
$b=\frac{n \cdot \sum_{i=1}^{n} x_{i} y_{i}-\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n \cdot \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$ and $a=\bar{y}-b \cdot \bar{x}$
It can be shown, using the 2nd derivatives, that these are really minimum places.

Equation of regression line for the data of Example 1.

- $y=1.016 \cdot x+15.5$
the slope of the line is 1.01
- Prediction based on the equation: what is the predir score for language for a stt having 400 points in math?
- $y_{\text {predicted }}=1.016 \cdot 400+15.5=،$

Scatterplot (corr 5v*6c) LANGUAGE $=15.5102+1.0163^{*} x$

Computation of the correlation coefficient from the regression coefficient.

- There is a relationship between the correlation and the regression coefficient:

$$
r=b \cdot \frac{S_{x}}{s_{y}}
$$

- where s_{x}, s_{y} are the standard deviations of the samples .
- From this relationship it can be seen that the sign of r and b is the same: if there exist a negative correlation between variables, the slope of the regression line is also negative .

SPSS output for the relationship between age and body mass

Model Summary

R	R Square	Adjusted R Square	Std. Error of the Estimate	Coefficient of correlation, $\mathrm{r}=0.018$
. 018	. 000	-. 007	13.297	

The independent variable is Age Age in years.
Coefficients

	Unstandardized Coefficients		Standardized Coefficients		
	B	Std. Error	Beta	t	Sig.
Age Age in years	.078	.372	.018	.211	.833
(Constant)	66.040	7.834		8.430	.000

Body mass (kg)

SPSS output for the relationship between body mass at present and 3

 years ago

The independent variable is Mass Body mass (kg).

Coefficients

	Unstandardized Coefficients		Standardized Coefficients		
	B	Std. Error	Beta	t	Sig.
Mass Body mass (kg)	.795	.039	.873	20.457	.000
(Constant)	10.054	2.670		3.766	.000

Body mass 3 years ago (kg)
Equation of the regression line: $y=0.795 x+10.054$

Regression using transformations

■ Sometimes, useful models are not linear in parameters. Examining the scatterplot of the data shows a functional, but not linear relationship between data.

Example

- A fast food chain opened in 1974. Each year from 1974 to 1988 the number of steakhouses in operation is recorded.
- The scatterplot of the original data suggests an exponential relationship between x (year) and y (number of Steakhouses) (first plot)
- Taking the logarithm of y, we get linear relationship (plot at the bottom)

- Performing the linear regression procedure to x and $\log (y)$ we get the equation
- $\log y=2.327+0.2569 x$
- that is
- $y=\mathrm{e}^{2.327+0.2569 x}=\mathrm{e}^{2.327} \mathrm{e}^{0.2569 x}=1.293 \mathrm{e}^{0.2569 x}$ is the equation of the best fitting curve to the original data.

$$
y=1.293 e^{0.2569 x}
$$

$\log y=2.327+0.2569 x$

Types of transformations

- Some non-linear models can be transformed into a linear model by taking the logarithms on either or both sides. Either 10 base logarithm (denoted log) or natural (base e) logarithm (denoted In) can be used. If $a>0$ and $b>0$, applying a logarithmic transformation to the model

Exponential relationship ->take log y

x	y	$\lg y$
0	1.1	0.041393
1	1.9	0.278754
2	4	0.60206
3	8.1	0.908485
4	16	1.20412

- Model: $y=a^{*} 10^{b x}$
- Take the logarithm of both sides:
- $\lg y=\lg a+b x$
- so $\lg y$ is linear in x

Logarithm relationship ->take $\log x$

x	y	$\log x$
1	0.1	0
4	2	0.60206
8	3.01	0.90309
16	3.9	1.20412

- Model: $y=a+\lg x$
- so y is linear in $\lg x$

Power relationship ->take $\log x$ and $\log y$

x	y	$\log \mathrm{x}$	$\log \mathrm{y}$
1	2	0	0.30103
2	16	0.30103	1.20412
3	54	0.477121	1.732394
4	128	0.60206	2.10721

- Model: $y=a x^{b}$
- Take the logarithm of both sides:
- $\lg y=\lg a+b \lg x$
- so $\lg y$ is linear in $\lg x$

Log10 base logarithmic scale

Logarithmic papers

Semilogarithmic paper

log-log paper

Reciprocal relationship ->take reciprocal of x

x	y	$1 / x$
1	1.1	1
2	0.45	0.5
3	0.333	0.333333
4	0.23	0.25
5	0.1999	0.2

- Model: $y=a+b / x$
- $y=a+b * 1 / x$
- so y is linear in $1 / x$

Example from the literature

Learn and Live

Correlation between echocardiographic endocardial surface mapping of abnormal wall motion and pathologic infarct size in autopsied hearts GT Wilkins, JF Southem, CY Choong, JD Thomas, JT Fallon, DE Guyer and AE Weyman
Circulation 1988;77;978-987
Circulation is published by the American Heart Association. 7272 Greenville Avenue, Dallas, TX 72514
Copyright © 1988 American Heart Association. All rights reserved. Print ISSN: 0009-7322. Online ISSN: 1524-4539

FIGURE 4. Correlation of the left ventricular endocardial surface area measured at autopsy (Autopsy Surface Area) with the endocardial surface area derived from the echocardiographic map (MAP ESA).

Vol. 77, No. 5, May 1988
Downloaded from circ.ahajoumals.org at SZTE ALTALANOS ORVOSTUDOMANYI KAR on November 22, 2007

Example 2. EL HADJ OTHMANE TAHA és mtsai: Osteoprotegerin: a regulátor, a protektor és a marker. Orvosi Hetilap 2008 ■ 149. évfolyam, 42. szám ■ 1971-1980.

Useful WEB pages

- http://davidmlane.com/hyperstat/desc biv.html
- http://onlinestatbook.com/stat sim/reg by eye/index.html
- http://www.youtube.com/watch?v=CSYTZWFnVpg\&feature =related
- http://www.statsoft.com/textbook/basicstatistics/\#Correlationsb
- http://people.revoledu.com/kardi/tutorial/Regression/NonLin ear/LogarithmicCurve.htm
- http://www.physics.uoguelph.ca/tutorials/GLP/

The origin of the word „regression". Galton: Regression towards mediocrity in hereditary stature. Journal of the Anthropological Institute 1886 Vol.15, 246-63

TABLE I.

Ntaber of Adtlt Children of tariots statcres born of 205 Mid-parests of rarious statures.
(All Female heights have been multiplied by 1.08).

Mrights of the Midparents in inches.	Heights of the Adult Children.											Total Number of		Medians.
	Belors	62.2	63.2642	65.2	$66 \cdot 2$	67.2			$70 \cdot 2{ }^{\text {! }} 71 \cdot 2$	72.273 .2	Abore	Adult Children.	Midparents.	
Abore	.	..	\cdots							13		4	5	
72.5	\cdots					12	$7{ }^{7}$ 1 2	4	19	6	72.2
71.5	I	1	3		3	5	$10 \quad 4$	9 2	2	43	11	$69 \cdot 9$
70.5	1	..	1 i.	1	1	3	12	18	14.7	4 - 3	3	68	22	69.5
69.5	.	..	$1 \quad 16$	4	17	27) 20	33	$25 \quad 20$	$11: 4$	5	183	41	63.9
65.5	1	..	$7 \quad 11$	16	25	31	34	48	21.18	$4 \quad 3$..	219	49	$65 \cdot 2$
67.5	.	3	5	15	36	3 s	28	35	$19 \quad 11$	4 ..	\cdots	211	33	$67 \cdot 6$
665	.	3	$\begin{array}{l:l}3 & 5\end{array}$	2	17	17	14	13	4.	78	20	$67 \cdot 2$
65.5	1	.	9 9	7	11	11	- 7	7	$5 \quad 2$	$1 .$.	..	66	12	66.7
64:5	1	1	4 4 4	1	5	5		2 '..	..	23	5	65.8
Below	1		$2 \quad 4$	1	2	2	1	1	14	1	..
Totals	5	7	$32 \quad 59$	4 S	117	135	120	167	$99 \quad 64$	$41 \quad 17$	14	929	205	.
Medians	. ${ }^{\prime}$	\cdots	$66.367 \cdot$	c7.9	$1^{67 \cdot 7}$	67.9	68.3	68.5	$169.0 \quad 69.0$	$70 \cdot 0,$.	.	.	-•	.

[^0]

[^0]: Note.-In calculating the Medians, the entries hare been taken as referring to the middle of the squares in which they stand. The reason why the headings run $62 \cdot 2,63 \cdot 2, \& c$., instend of $62 \cdot 5,63 \cdot 5, \& c$., is that the obserrations are unequally distributed between 62 and 63,63 and 64 , \&c., there being a strong lias in farour of integral inches. After careful consideration, I concluded that the headings, as adopted, best satisfied the conditions. This inequality was not apparent in the case of the Mid-parents.

