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Scatterplot

Relationship between two continouous variables

Student Hours studied Grade
Jane 8 70
Joe 10 80
Sue 12 75
Pat 19 90
Bob 20 85
Tom 25 95
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Scatterplot

Relationship between two continouous variables
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Scatterplot
Other examples
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Example Il.

Imagine that 6 students are given a battery of tests by a
vocational guidance counsellor with the results shown in the

following table:

STUDENT RETAIL THEATER MATH LANGUAGE
1 Pat 51.00 30.00 525.00 550.00
2 Sue 55.00 60.00 515.00 535.00
3 Inez 58.00 90.00 510.00 535.00
4 Arnie 63.00 50.00 495.00 520.00
S Gene 85.00 30.00 430.00 455.00
6 Bob 95.00 90.00 400.00 420.00

Variables measured on the same individuals are often related to

each other.




Let us draw a graph called scattergram to
Investigate relationships.

m Scatterplots show the

relationship between two |
quantitative variables
measured on the same cases. op™

m In a scatterplot, we look for the
direction, form, and strength of ™7
the relationship between the
variables. The simplest
relationship is linear in form ]
and reasonably strong. ol

m Scatterplots also reveal
deviations from the overall
pattern.



Creating a scatterplot

m \When one variable in a scatterplot
explains or predicts the other, place it on
the x-axis.

m Place the variable that responds to the
predictor on the y-axis.

m If neither variable explains or responds to
the other, it does not matter which axes
you assign them to.



Possible relationships
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Describing linear relationship with number:

the coefficient of correlation (r).
Also called Pearson coefficient of correlation

m Correlation is a numerical measure of the strength of a
linear association.

m The formula for coefficient of correlation treats x and y
iIdentically. There is no distinction between explanatory
and response variable.

m Let us denote the two samples by

X1aX2,"'X|:1 and y1!y2""yn ’ .
the coefficient of correlation can be computed according

to the following formula

n‘Zn:Xiyi _Zn:XiZn:Yi Zn:(xi_i)(yi_y)

\/(n-ixf —(_ixfj(n-iy? —éyﬂ Ji(xi S0P (- 9




Karl Pearson

m Karl Pearson (27
March 1857 — 27 April
1936) established the
discipline of
mathematical
statistics.
http://en.wikipedia.org
/wiki/Karl_Pearson
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http://upload.wikimedia.org/wikipedia/commons/2/21/Karl_Pearson_2.jpg

Properties of r

Correlations are between -1 and +1; the val .

between -1 and 1, either extreme indicates 20t d = )
association. 1o .
-1<r 1. g 2 d

math score
40 - [

30 *

a) If ris near +1 or -1 we say that we havet .

10

0 T T TN § 40
400 450 500 550 ®

math score

mmmmmmmmm

b) If r=1, we say that there is perfect positive vorrorawor

If r= -1, then we say that there is a perfect negative

c) A correlation of zero indicates the absence of linear
association. When there is no tendency for the points to lie
in a straight line, we say that there is no correlation (r=0) or

correlation. - /

we have low correlation (ris near 0 ).
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Calculated values of r
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Scatterplot
Other examples
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Correlation and causation

m a correlation between two variables does
not show that one causes the other.

14



Correlation by eye

http://onlinestatbook.com/stat sim/req by eye/index.html

m This applet lets you estimate
the regression line and to
guess the value of Pearson's
correlation.

m Five possible values of
Pearson's correlation are
listed. One of them is the
correlation for the data
displayed in the scatterplot.
Guess which one itis. To
see the correct value, click
on the "Show r" button.

M Regression by Eye Simulation

Bl Regression by Eye Simulation

MSE

4 .
15 20 25 30 35 40 45 50 55 60 65 70 75 &0

Mew Data

Shiow Minirum M5SE

EEX
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http://onlinestatbook.com/stat_sim/reg_by_eye/index.html

Effect of outliers
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Correlation and linearity

m [wo variables may be

closely related and ‘ :
still have a small SR

correlation if the form L et

of the relationship is r=2.8 E-15 (=0.0000000000000028)
not linear.

y

1.2

0.8
0.6 4
04 4
024 o

r=0.157



Correlation and linearity

Four sets of data with the same correlation of 0.816
http://en.wikipedia.org/wiki/Correlation_and_dependence

18


http://en.wikipedia.org/wiki/File:Anscombe%27s_quartet_3.svg

Coefficient of determination

m [he square of the correlation coefficient
multiplied by 100 is called the coefficient of
determination.

m |t shows the percentages of the total variation
explained by the linear regression.

m Example.

m [he correlation between math aptitude and
language aptitude was found r =0,9989.
The coefficient of determination, r2=0.917 .
So 91.7% of the total variation of Y is caused by
its linear relationship with X .

19



When iIs a correlation ,, high”?

m \What is considered to be high correlation
varies with the field of application.

m The statistician must decide when a
sample value of r is far enough from zero,
that is, when it is sufficiently far from zero
to reflect the correlation in the population.

20



Testing the significance of the coefficient
of correlation

m [he statistician must decide when a sample
value of r is far enough from zero to be
significant, that is, when it is sufficiently far
from zero to reflect the correlation in the
population.

m (details: lecture 8.)

21



Prediction based on linear correlation:
the linear regression

m \When the form of the relationship in a scatterplot
IS linear, we usually want to describe that linear
form more precisely with numbers.

m \We can rarely hope to find data values lined up
perfectly, so we fit lines to scatterplots with a
method that compromises among the data
values. This method is called the method of
least squares.

m The key to finding, understanding, and using
least squares lines is an understanding of their
failures to fit the data; the residuals.

22



Residuals, example 1.

Scatterplot (corr 5v*6¢)
LANGUAGE = 15.5102+1.0163*x
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Residuals, example 2.

100

Scatterplot (corr 5v*6¢)
RETAL =234.135-0.3471*x
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MATH:RETAIL: r =-0.9993; p = 0.0000008 MATH
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Residuals. exambple 3.

Scatterplot (corr 5v*6¢)

THEATER = 112.7943-0.1137*x
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Prediction based on linear correlation:

the linear regression
A straight line that best fits the data:
y=bx+a or y=a + bx
Is called regression line
Geometrical meaning of a and b.

b: is called regression coefficient, slope of the best-fitting
line or regression line;

a: y-intercept of the regression line.

The principle of finding the values a and b, given x4,X,,...X,, and

Y1.Y2,--.Yn -
Minimising the sum of squared residuals, i.e.

2( yr-(atbx;) )2 — min

26



Residuals. exambple 3.

Scatterplot (corr 5v*6c¢)
THEATER = 112.7943-0.1137*x
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The general equation of alineisy = a+ b x. Wewould like to find the values of a and b
in such away that the resulting line be the best fitting line. Let's suppose we have n pairs of
(X, y;) measurements. We would like to approximate y; by values of aline . If x; is the

independent variable, the value of thelineis a+bx;

We will approximate y; by the value of the line at x;, that is, by a + b ;. The

approximation is good if the differences vy, —(a+b-x,) are small. These differences can be
positive or negative, so let's take its square and summarize:

> (s ~(a+b-x))*=S(a.b)

This is a function of the unknown parameters a and b, called also the sum of squared
residuals. To determine a and b: we have to find the minimum of S(a,b). In order to find the
minimum, we have to find the derivatives of S, and solve the equations

73] 1)

“-0 Z-0
2 &

The solution of the equation-system gives the formulasfor b and a:

n

n'ixiyi _Zn:Xi iyi z(xi_;)(yi_y) - =
b: o1 i=1 i=1 — =1 anda:y—b-x

n

D O S Y T

i=1

It can be shown, using the 2nd derivatives, that these are really minimum places.
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Equation of regression line for the data of
Example 1.

m y=1.016-x+15.5
the slope of the line is 1.01 P

m Prediction based onthe  ~ o
equation: what is the predic ., |
score for language for a sti: - : } |

having 400 points in math?
B Y, csictes=1.016 -400+15 5=

[ MATHLANGUAGE r =0.9989; p = 0.000002 MATH

29



Computation of the correlation
coefficient from the regression

coefficient.

m [here is a relationship between the correlation

and the regression coefficient:

S
r=b.-—=

Sy

m where s,, S, are the standard deviations of the
samples

m From this relationship it can be seen that the
sign of r and b is the same: if there exist a
negative correlation between variables, the
slope of the regression line is also negative .

30



SPSS output for the relationship between age and body mass

Model Summary

R

.018

R Sguare
.000

Adjusted Std. Error of
R Square | the Estirmate
-.007 13.297

Coefficient of correlation, r=0.018

The independent variable is Age Age in years.

Coefficients

Unstandardized Standardized
Coefficients Coefficients
B Std. Error Beta t Sig.
Age Age in years .078 372 .018 211 .833
(Constant) 66.040 7.834 8.430 .000 Body mass (kg)
00 O D
8
Q o]
. . . a0 o0 o o
Equation of the regression line: 3 ° S
_ i 8 o O o] o
y=0.078x+66.040 & °Bgg o o
€o00 So )
70 ooBo o ©
c O 8 0 O o]
Q o 8 Q o o
™ ° B 8% o
988 g°0s
50 g o o © o o o Q
o
40 I I | I |
15 20 25 30 35

Age in years
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SPSS output for the relationship between body mass at present and 3
years ago

Model Summary

Adjusted Std. Error of

R R Square [ R Square he Estimate 101 T —_
TR E R Coefficient of correlation, r=0.873

The independent variable is Mass Body mass (kg).

Coefficients

Unstandardized Standardized
Coefficients Coefficients
B Std. Error Beta t Sig.
Mass Body mass (kg) .795 .039 .873 20.457 .000
(Constant) 10.054 2.670 3.766 .000 Body mass 3 years ago (kg)

) Observed
1004 o —— Linear

Equation of the regression line:
y=0.795x+10.054

Body mass (kg)
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Regression using transformations

m Sometimes, useful models are not linear in
parameters. Examining the scatterplot of
the data shows a functional, but not linear
relationship between data.

33



Example

100 1

m A fast food chain opened in .o+
1974. Each year from 1974 to 0 |
1988 the number of y20 |
steakhouses in operation is 150 |
recorded. 0

m The scatterplot of the original
data suggests an exponential
relationship between x (year)

and y (number of o
Steakhouses) (first plot) ol
m Taking the logarithm of y, we |

get linear relationship (plot at
the bottom) 0




m Performing the linear regression procedure
to x and log (y) we get the equation

mlogy=2.327 + 0.2569 X

m that Is
[] y = 62'327 + 0.2569 x=62.327eO.2569x= 1 _29360.2569x

IS the equation of the best fitting curve to the
original data.

35



450 1 61

I P ote
@ | | oo
300 t . at P 4
v 250 T ¢ . L 4
200 + Inty} 3 [ ¢*®
150 1 L 2t
100 .0‘
50 | ' 4 1
HIPYYX X A 0
0 5 10 15 0 5 10 15
time time
y = 1.293g0-2569x logy = 2.327 + 0.2569 X
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Types of transformations

m Some non-linear models can be
transformed into a linear model by taking
the logarithms on either or both sides.
Either 10 base logarithm (denoted log) or
natural (base e) logarithm (denoted In) can
be used. If a>0 and b>0, applying a
logarithmic transformation to the model

37



Exponential relationship ->take log y

X y gy

0 1.1  0.041393
1 1.9  0.278754
2 4 0.60206
3 8.1  0.908485
4 16 1.20412

m Model: y=a*10bx

m Take the logarithm of
both sides:

m |lgy =lga+bx
m solgyislinearinx

000000
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Logarithm relationship ->take log x

X y log x

1 0.1 0

4 2 0.60206
8 3.01 0.90309
16 3.9 1.20412

m Model: y=a+Igx

m soyislinearinlg x

39



Power relationship ->take log x and log y

y log x log y
2 0 0.30103 .
16 0.30103 | 1.20412 50 .

AW N 2 X

54 0.477121 1.732394
128 0.60206 = 2.10721

m Model: y=axP

m Take the logarithm of
both sides:

m |lgy =lga+b Igx
m solgyislinearinlg x

40



Log10 base logarithmic scale

log10 x
10
9 .
5 /
4
0.5
3
2

10
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Logarithmic papers

(58] I L T w e i wa Rt

Fa

Panel 2

Semilogarithmic paper log-log paper



Reciprocal relationship ->take reciprocal of x

X y 1/x
1 1.1 1
2 0.45 0.5
3 0.333  0.333333 e L
4 0.23 0.25 R
3 0.1999 0.2

m Model: y=a +b/x

m y=a +b*1/x

m soVyislinearin 1/x

43



Example from the literature

Circulation s

Learn and Live..

JOURMAL OF THE AMERICAN HEART ASSOCIATION

Correlation between echocardiographic endocardial surface mapping of
abnormal wall motion and pathologic infarct size in antopsied hearts
GT Wilkmms, JF Southem, CY Cheong, J) Thomas, JT Fallon, Guyer and AE
Wevman
Circulation 1988:77:978-987
Circulation is published by the American Hea.}l'g.:’t]*sjucmﬁﬂn. 7272 Greeoville Avenus, Diallas, TX
]
Copyright € 1088 American Heart Association. All rights reserved. Prnt ISSN: 0008-7322. Online
IS5 1524-45392
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MAP ESA (cm2)
500 — — s

450 1 R - .94, p - .0001
400 MAP ESA - 117 « AUTOPSY AREA + 20.2

350
300
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200
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o | I 1 i 1 I i
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FIGURE 4. Correlation of the left veniricular endocardial surface area measured at aulopsy (Autopsy Surface Area) with the
endocardial surface area derived from the echocardiographic map (MAF ESA).

Vol. 77, No. 5, May 1988
Downlozded from cive ahajommals orz 2t 5ZTE ALTAT ANOS OREVOSTUDORANTI KAE on November 22, 2007

983
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Example 2. EL HADJ OTHMANE TAHA és mtsai: Osteoprotegerin: a regulator, a
protektor és a marker. Orvosi Hetilap 2008 m 149. évfolyam, 42. szam m 1971-1980.

O
E y=3,0937x +3,8928 .
@ R'=10,2287
g b <0,001
4 20+ ]
o [ ]
o]
Vi
7
T 154
Z
@
)
=
o 10
S
L
Vi
=
N
25
0 ¢
©
o
g O I I ] T T T |
‘*-d" 0 0,5 1 15 2 25 3 35 4
p
2
S Osteoprotegerin-szint (In transzformalt értékek, pmol/l)
4

3. abra | A carotis-femoralis PWV és az ctstcor|otcgmn szérumszintje kozetti linearls regresszio



Useful WEB pages

http://davidmlane.com/hyperstat/desc biv.html
http://onlinestatbook.com/stat sim/req by eye/index.html

http://www.youtube.com/watch?v=CSYTZWFnVpqg&feature
=related

http://www.statsoft.com/textbook/basic-
statistics/#Correlationsb

http://people.revoledu.com/kardi/tutorial/Reqgression/NonLin
ear/LogarithmicCurve.htm

http://www.physics.uoguelph.ca/tutorials/GLP/
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http://onlinestatbook.com/stat_sim/reg_by_eye/index.html
http://www.youtube.com/watch?v=CSYTZWFnVpg&feature=related
http://www.youtube.com/watch?v=CSYTZWFnVpg&feature=related
http://www.statsoft.com/textbook/basic-statistics/#Correlationsb
http://www.statsoft.com/textbook/basic-statistics/#Correlationsb
http://people.revoledu.com/kardi/tutorial/Regression/NonLinear/LogarithmicCurve.htm
http://people.revoledu.com/kardi/tutorial/Regression/NonLinear/LogarithmicCurve.htm
http://www.physics.uoguelph.ca/tutorials/GLP/

The origin of the word ,regression”

. Galton: Regression towards

mediocrity in hereditary stature. Journal of the Anthropological
Institute 1886 Vol.15, 246-63

TABLE I

Nrtuser oF Aorir CHILDREN OF VARIOTS STATCRES BORN OF 205 MID-PARENTS OF VARIOUS STATURES.
(All Female heights have been multiplied by 1-0%).

HMeights of

Heights of the Adult Children.

Total Number of

the Mid- .
parents in | . I F l ' - Medians.
inches. oo lo22l0a2 sa2lese 6o2for2 es2lsenlron T raelisa| Abore Atk | i
[ : | ! | Children. | parents.
_ ' | | . i
Above .. eo yee e |ee | e 0% T X v Ui 1: 3 e 4 5 .
723 o hewiBie Tie Poiboi femt W LRI RERL S 4 19 6 72:2
715 o deeleiw |11 8] 4131 81200 4| 0! 2] 2 43 1 699
703 P it i Vi b Xl 3 St I T 21 47 8 3 68 22 69'5
693 e 1. | 1°16| 4[17|27 /20 33|25 2011 . 4 5 183 41 639
655 1 7-11|16125]|81 34 48|21.18! 4. 8| .. 219 49 632
675 o ! 3] 5 14|15136|38 23 .33/19 11! 4',, . 211 33 676
663 .. [ S st Sl ie 8L & . b . 78 20 672
655 1 .19 sl 71 nt 7715 20 1. . 66 12 667
645 1 { 1 4: 4 1 5 5 0 ' 2] ee ety A 23 5 658
Below 1 RS SE R S R Y vi 14 1 .
Totals 5 | 7]82 59 |4S1117 135 120 167 [ 99 64141 17! 14 028 | 203 .
I H
Medians o ¢ liGG'S 678 |GT'9 I67'7 67'Y 683 6851690 690|:0 OI i3 N #4 .
| i I |

NoTE.—In calculating the Medians, the entries have been taken as referring to the middle of the squares in which they

stand. The reason why the headings run 622, €3-2, &c., instead of 625, 63'5, &c., is that the observations are unequally

distributed between 62 and 63, 63 an

64, &c., there being a strong Lias in favour of integral inches.
I concluded that the hea.dings, as adopted best satisied the conditions.
Mid-parents,

After careful consideration,
This inequulity was not apparent in the case of the

e

']J.??HJ”HJS‘_?!F’ Z'HJI .ﬁﬂ!ﬂ(ﬂ L I{}ﬂ. V
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Plate IX.

i RATE of REGRESSION IN HEREDITARY STATURE.
Fig.(a)
HE!GHT The Deviates of the Children are to those of DEVIATE
e their Mid-Parents as 2 to 3. .
[ inches inches
' = + .} '
| - 1
‘ #1 | When Mid-Parents are taller than mediocrity, § e SRR
! their Children tend to be shorter than they. !
; F — + 2 i
1 |
Ll +1 \
| 69 H |
! Moo o |
i 68 : i
I H !
H o1
: 67 I H ?
66 %% When Mid Parents are shorter than mediocrity, T !
c their Children tend to be taller than they. !
| H -3
65 M !
A |
f — -4 !

T TP EWREmshe it
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