G7. *t*-tests

7.1. Paired *t*-tests

7.1.1. The effect of saline on the blood PH was examined in a certain disease. The blood PH value was measured two times: before the treatment and 20 minutes later, after infusion of saline (n=18). Is there a significant change in mean blood PH level a 5% level?

0,	20'	Descriptive stat.:	0'	20'	Difference		
7.43	7.43	Mean	7.3821	7.3911	-0.009		
7.39	7.39	SD	0.0331	0.03336	0.026		
7.37	7.38						
7.43	7.42						
7.39	7.39	Mean-SD					
7.36	7.41	diagram:					
7.38	7.38						
7.39	7.39						
7.34	7.41						
7.32	7.35						
7.40	7.39						
7.32	7.33						
7.42	7.39						
7.42	7.40						
7.37	7.36						
7.37	7.39						
7.39	7.37						
7.43	7.48						
The name of the appropriate test:							
			.critical <i>t</i> -	value=			
	on						
Consequences							
Chool	Charle your coloulation using regults of SDSS.						
	Check your calculation using results of SPSS: 1. Find the 95% confidence interval for the difference						

Find the 95% confidence interval for the difference......
Decision based on the confidence interval......
Find t=....., df=.....
Decision based on t-value......
Find the p-value......

Decision based on p-value.....

Paired Samples Statistics

					Std. Error
		Mean	N	Std. Deviation	Mean
Pair	D1 T0	7.3821	18	.03314	.00781
1	D1 T20	7.3911	18	.03360	.00792

Paired Samples Test

			Paire	d Differences	6				
				Std. Error	95% Cor Interva Differ	l of the			
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	D1 T0 - D1 T20	0090	.02624	.00619	0220	.0040	-1.455	17	.164

7.1.2. The effect of Na-lactate on the blood PH was examined in a certain disease. The blood PH value was measured two times: before the treatment and 20 minutes later, after infusion of Na-lactate (n=20). Is there a significant change in mean blood PH level a 5% level?

•	•	an blood PH level a	5% level					
0'	20'		0'	20'	Difference			
7.42	7.46	Mean	7.387	7.446	-0.059			
7.36	7.43	SD	0.0429	0.036	0.043			
7.40	7.46							
7.43	7.48							
7.38	7.42							
7.32	7.45							
7.37	7.46	Mean-SD						
7.36	7.48	diagram:						
7.34	7.45							
7.31	7.37							
7.34	7.47							
7.37	7.43							
7.42	7.48							
7.42	7.43							
7.46	7.51							
7.37	7.41							
7.45	7.48							
7.42	7.44							
7.42	7.37							
7.41	7.45							
		riate test:						
		HA:						
			.critical t-	value=				
Decisi	on							
Conse	Consequences							
	Check your calculation using results of SPSS:							
		nce interval for the o	difference					
Dooigi	Decision based on the confidence interval							

Decision based on the confidence interval.....

2. Find t=....., df=.....

Decision based on t-value.....

3. Find the p-value.....

Decision based on p-value.....

Paired Samples Statistics

					Std. Error
		Mean	N	Std. Deviation	Mean
Pair	D2 T0	7.3871	20	.04294	.00960
1	D2 T20	7.4461	20	.03594	.00804

Paired Samples Test

			Paire	d Differences	6				
				Std. Error	95% Cor Interva Differ	l of the			
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	D2 T0 - D2 T20	0590	.04364	.00976	0794	0385	-6.041	19	.000

7.1.3. The systolic blood pressure of 6 patients was measured before and after a new drug. The mean od the sample differences = 6 mmHg, the standard error of the differences was SE=4.65. Is there a significant change in blood pressure at 5% and at 1% level? ($t_{5.0.05}$ =2.57, $t_{5.0.01}$ =4.03).

enunge in crocu pressure ut c / c und ut i / c rever	
5% level:	1% level:
H0:	H0:
HA:	HA:
α=	α=
degrees of freedom=	degrees of freedom=
t=	t=
decision	decision

7.1.4. The body mass of 16 patients was measured before and after a special diet. The miean of the sample differences was = 5 kg, the standard deviation of the differences was SD=2.5. Is there a significant change in blood pressure at 5% and at 1% level?.

5% level:	1% level
H0:	H0:
HA:	HA:
α=	α=
degrees of freedom=	degrees of freedom=
$t_{table} = \dots$	t _{table} =
t=	t=
decision	decision

Problems to be solved by SPSS

7.1.5. Open the file BEFAFTER.SAV . A study was conducted to determine weight loss, body composition, etc. in obese women before and after 12 weeks of treatment with a very-low-calorie diet . Column BEFORE and AFTER contain weights of 9 women. We wish to know if these data provide sufficient evidence to allow us to conclude that the treatment is effective in causing weight reduction in obese women. Let α =0.05. (Statistics/Compare Means/Paired-Samples T-test with variables before and after),

(Statistic	s/Compare Me	eans/Pairea-	-sampies 1-	iesi wiin variadies dejore and
Before diet	Mean		standard de	eviation
After diet	Mean		.standard d	eviation
The name of	the appropriat	e test:		
What is the	null hypothesis	?		
What is the a	alternative hyp	othesis?		
The result of	the test			
Based on con	nfidence interv	al		
95% CI for t	he difference:	(,)
Decision:				· · · · · · · · · · · · · · · · · · ·
Based on t-v	alue			
<i>t</i> =	df=	t _{tabl}	e=	. Decision:
Based on p-v	value			
.p=	I	Decision		

7.1.6. Open the file **QUEST2010.SAV**. Compare the mean change of the body mass.

7.1.7. Open the file Anthropometrics.sav. Compare the mean of two consecutive measurements.

7.2. Two-sample t-tests. Problems to be solved manually

7.2.1. Suppose we measured the blood pressure of two groups of people: the first group was not treated (control group), the second group was treated. We would like to test prove that the treatment was effective.

Control group	Treatment group
170	120
160	130
150	120
150	130
180	110
170	130
160	140
160	150
	130
	120
<u>n=8</u>	<u>n=10</u>
<i>x</i> =162.5	y=128
SD _x =10.351	SD _V =11.35
$SD_{x}^{2} = 107.14$	$SD_{y}^{2}=128.88$
	$s_p^2 = \frac{7 \cdot 107.14 + 9 \cdot 128.88}{10 + 8 - 2} = \frac{749.98 + 1160}{16} = 119.37$
	$t = \frac{162.5 - 128}{\sqrt{119.37}} \cdot \sqrt{\frac{10 \cdot 8}{18}} = \frac{34.5}{10.92} \cdot \sqrt{4.444} = 6.6569$

The name of the appropriate test:....

НО:....

HA:....

Assumptions:....

Check visually the equality of variances:

a) Make a decision based on *t*-value.

t=....df=.....critical t-value=.....Decision....

b) Make a decision based on *p*-value. *p*=0.000005511. Decision:

Check your calculation using results of SPSS:

Group Statistics					
	treatment	N	Mean	Std. Deviation	Std. Error Mean
BP	Control	8	162.5000	10.35098	3.65963
	Treatment	10	128.0000	11.35292	3.59011

Independent	Samples	Test

		Levene's Test for Equality of Variances		t-test for Equality of Means							
							Mean	Std. Error	95% Cor Interva Differ		
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper	
BP	Equal variances assumed	.008	.930	6.657	16	.000	34.50000	5.18260	23.51337	45.48663	
	Equal variances not assumed			6.730	15.669	.000	34.50000	5.12657	23.61347	45.38653	

Equality of variances, p-value:....

Equality of variances, decision:.....

Equality of population means:

t= df	= p=
	ce:

7.2.2. The body mass of secondary school girls was compared in two Hungarian cities. Decide whether the two samples are drawn from populations having the same mean? Read the results from the SPSS output below.

Group Statistics

	VAROS	N	Mean	Std. Deviation	Std. Error Mean
Jelenlegi testsúlya /kg/	Szeged	133	57.94	9.093	.788
	Békéscs.	69	54.97	7.837	.943

The name of the appropriate test:....

HO:

НА:....

Assumptions:....

Check visually the equality of variances:

Equality of variances, p-value:....

Equality of variances, decision:....

Equality of population means:

t=..... df=..... p=.....

95% CI of the difference:

Independent Samples Test

		Levene's Equality of	Test for Variances	t-test for Equality of Means						
							Mean	Std. Error	95% Cor Interva Differ	l of the
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
Jelenlegi testsúlya /kg/	Equal variances assumed	.031	.861	2.304	200	.022	2.97	1.289	.428	5.510
	Equal variances not assumed			2.415	156.767	.017	2.97	1.229	.540	5.397

Problems to be solved by SPSS

7.2.3. Open the file **QUEST2010.SAV**. Compare the mean body mass of boys and girls.

(Statistics/Compare Means/Independent-Samples T-test with mass->Test variable and sex->Grouping variable/Define Groups: 0 and 1/Continue/OK),

The name of the appropriate test:
НО:
НА:
Assumptions:

Male Sample size	Mean	standard deviation
Female Sample size	Mean	standard deviation
Equality of Variances		
		reedom)2-Tail Sig (p-value)
Conclusions	· •	

7.2.4. Open the file **szulsuly.sav**. Variable **bwt** contains the body weight of the newborn babies and variable smoke contains values according to the mother smoking (0- not, 1 - yes). Compare the mean body weight of the babies by smoking habits of the mother!

7.2.5. Open the file **Anthropometrics.sav**. Compare the body height of boys and girls! Find other variables to be compared and find the appropriate test!

7.2.6. Open the file **CALC.SAV**. Here, systolic blood pressures are given before and after a calcium treatment in two geoups. Find problems where paired t-tests can be used. Find problems where two-sample t-tests can be used.

7.2.7. Open the file **NEWDRUG.SAV** from the SPSS library (c:\Program Files\SPSS.....). Find problems where paired t-tests can be used. Find problems where two-sample t-tests can be used.