Practice, confidence intervals

1. Confidence interval for the population mean (μ), if population standard deviation (σ) is known.
1.1.The mean height of first year pharmaceutical students is 175 cm with $\mathrm{SD}=10$. Let' s suppose the height follow normal distribution with these parameters.
a) What percentage of the height is above 175 cm
b) What percentage of the height is below 175 cm ? $\mathrm{P}($ height $<175)=$ \qquad
c) What percentage of the height are between 155 and 195?
d) What percentage of the height is below 155 cm ?
1.2. Calculate the mean and standard error of mean of a sample of 36 cases derived from this population Mean. \qquad S.E. \qquad
1.3 The mean of another random sample with 36 number of cases is 172 and $\mathrm{SD}=10$. Calculate the 95% confidence interval

What is the meaning of the 95% CI? \qquad
Compare the population mean (175) with the 95% CI calculated. It is included in the $95 \% \mathrm{CI}$? \qquad
2. Confidence interval for the population mean (μ), if population standard deviation (σ) i unknown.
2.1. (Example from Altman). In a trial we actually observed a mean serum albumin of $34.46 \mathrm{~g} / \mathrm{l}$ with a standard error of $1.273 \mathrm{~g} / \mathrm{l}$ from a sample of 21 patients with primary biliary cirrhosis. Find the 95% confidence interval.
$\alpha=$
$\mathrm{N}=$
Mean=
SE=
Degrees of freedom=
$\mathrm{t}_{\alpha}=$
Mean- $\mathrm{t}_{\alpha} \mathrm{SE}=\quad$ Mean $+\mathrm{t}_{\alpha} \mathrm{SE}=$
Confidence interval:
Meaning:
P(.. .$<$ true population mean< \qquad .) $=0.95$
We can be 95% confident from this study that the true mean serum albumin among all such patients lies somewhere in the range 31.8 to $37.1 \mathrm{~g} / \mathrm{l}$, with 34.46 as our best estimate. This interpretation depends on the assumption that the sample of 21 patients is representative of all patients with the disease.
2.2. Find the 99% confidence interval
$\alpha=$
$\mathrm{N}=$
Mean=
SE=
Degrees of freedom=
$\mathrm{t}_{\alpha}=$
Mean- $\mathrm{t}_{\alpha} \mathrm{SE}=\quad$ Mean $+\mathrm{t}_{\alpha} \mathrm{SE}=$
Confidence interval:
Meaning:
P(. <true population mean<) $=0.99$
2.3. Suppose that the above data were observed from a sample of 216 patients. Find the 95% confidence interval.
$\alpha=$
$\mathrm{N}=$
Mean=
SE=
Degrees of freedom=
$\mathrm{t}_{\alpha}=$
Mean- $\mathrm{t}_{\alpha} \mathrm{SE}=\quad$ Mean $+\mathrm{t}_{\alpha} \mathrm{SE}=$
Confidence interval:
Meaning:
P(. \qquad <true population mean< \qquad .) $=0.95$
2.4. In a study, systolic blood pressure of 10 healthy women was measured. The mean was 119 , the standard error 0.664 . Calculate the 95% confidence interval for the population mean!
$\left(\alpha=0.05, \mathrm{t}_{\mathrm{tabla}}=2.26\right)$.
2.5. In a study, systolic blood pressure of 10 healthy women was measured. The mean was 119 , the standard error 2.1. Calculate the 95% confidence interval for the population mean!
$\left(\alpha=0.01, \mathrm{t}_{\mathrm{tabla}}=2.26\right)$.
Compare the lenght of this last confidence interval to the earlier one (in Problem 2.4.).
..................... Explain \qquad

Questions

1. Which is wider, a 95% or a 99% confidence interval?
2. When you construct a 95% confidence interval, what are you 95% confident about?
3. When computing a confidence interval, when do you use t-table and when do you use u ?

Practice with SPSS:

Open the data file of the questionnaire filled out by the students in SPSS! (Data:E/Data/Biostat=kerd??.sav) or QUEST2010.sav.

1. Examine the distribution of "age"!

Find the 95% CI.
Find the 99\% CI.
With 95% probability, can we state that the mean age in the population of students is 20 ? \qquad
Explain
With 99% probability, can we state that the mean age in the population of students is 20 ? \qquad
Explain...............2. Examine the distribution of "body height" for boys and girls!
Find the 95\% CI for boys
girls
Find the 99% CI for boys
girls
With 95% probability, can we state that the mean body height in the population of girls is 160 cm ? \qquad
Explain
With 95% probability, can we state that the mean body height in the population of boys is 160 cm ? \qquad
Explain \qquad
With 99% probability, can we state that the mean body height in the population of girls is 160 cm ? \qquad Explain. \qquad
With 99% probability, can we state that the mean body height in the population of boys is 160 cm ? \qquad
Explain. \qquad

