Probability

1. If we roll a dice, there are 6 possible outcomes. If X represents the value of the outcome, find the following probabilities:
a) $P(X=1)=\ldots$
b) $P(X>1)=\ldots$.
c) $\mathrm{P}(1<\mathrm{X}<4)=\ldots$
2. A fair coin is tossed twice. List the possible outcomes!

Find the probability of getting two tails \qquad
3. A penny is tossed once and a dice is rolled once. The possible outcomes are H1,H2,H3,H4,H5,H6,T1,T2,T3,T4,T5,T6. Find the probabilities of the following outcomes:
a) tossing a head and rolling a 5
b) tossing a head or rolling a 5 \qquad
c) tossing a head and rolling an even number \qquad
d) tossing a head or rolling an even number. \qquad
e) rolling either a 4 or a 6 . \qquad
f) rolling a 6 \qquad
g) rolling a head. \qquad
Standard normal distribution

x	$\Phi(\mathrm{x}):$ proportion of area to the left of x
-4.00	0.00003
-3.00	0.0013
-2.58	0.0049
-2.33	0.0099
-2.00	0.0228
-1.96	0.0250
-1.65	0.0495
-1.00	0.1587
0.00	0.5
1.00	0.8413
1.65	0.9505
1.96	0.975
2.00	0.9772
2.33	0.9901
2.58	0.9951
3.00	0.9987
4.00	0.99997

-2.33 0.0099
-2.00 0.0228
-1.96 0.0250
-1.65 0.0495
$-1.00 \quad 0.1587$
$0.00 \quad 0.5$
$1.00 \quad 0.8413$
1.65 0.9505
$1.96 \quad 0.975$
$2.00 \quad 0.9772$
$2.33 \quad 0.9901$
$2.58 \quad 0.9951$
$4.00 \quad 0.99997$

1. For a standard normal distribution, find the following probabilities:
$P(X<0)=\ldots . \quad P(X>0)=\ldots . . \quad P(X<1)=\ldots . \quad P(X>1)=\ldots .$.
2. Find the area under the standard normal curve between the given values, that is, find the following probablities:
a) $\mathrm{P}(-1<\mathrm{X}<1)=$ \qquad
b) $\mathrm{P}(-1.96<\mathrm{X}<1.96)=$ \qquad
c) $\mathrm{P}(-2<\mathrm{X}<2)=$ \qquad
3. For a standard normal distribution, find x value such that the area to the left of x is
a) 0.025
b) 0.5
4. The results in a certain blood test performed in a medical laboratory are known to be normally distributed with $N(60,10)$.
Sketch the graph of this distribution!
a) What percentage of the results are below 60 ?. $\mathrm{P}(\mathrm{X}<60)=$...
a) What percentage of the results are above 60 ?. $P(X>60)=\ldots$.
c) What percentage of the results are between 40 and 80 ? $\mathrm{P}(40<\mathrm{X}<80)=$........
d) What percentage of the results are below 40 ?. $\mathrm{P}(\mathrm{X}<40)=. .$. .
e) What percentage of the results are above 80 ?.. $P(X>80)=\ldots$.
f) The "healthy range" falls between 30 an 90 . What percentage of the results are between 30 and 90 ? That is, what is the probability that a blood sample picked at random will have results in the "healthy range" of 30 to 90 ? $\mathrm{P}(30<\mathrm{X}<90)=$
d) What percentage of the results are outside the "healthy range" of 30 to 90 ? \qquad
5. At an urban hospital the weights of new-born infants are normally distributed with $\mathrm{N}(3500,400)$. Sketch the graph of this distribution!

Let X be the weight of a new-born picked at random. Find the following probabilities:
a) $\mathrm{P}(\mathrm{X}<3500)=$ \qquad
b) $P(3100<X<3900)=$.

