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Chapter 1.  NONLINEAR 
STATIONARY PROBLEMS 

1.  1 Introduction 

The aim of these lecture notes is to give a short itroduction to the theory of monotone type operators, and by 

using this theory to consider abstract stationary and evolution equations with operators of this type. Then the 

abstract theory will be applied to “weak” solutions of nonlinear elliptic, parabolic, functional parabolic, 

hyperbolic and functional hyperbolic equations of “divergence type”. By using the theory of monotone type 

operators, it is possible to treat several types of nonlinear partial differential equations (not only semilinear 

PDEs) and to prove global existence of solutions of time dependent problems. However, there are a lot of 

problems in physics, chemistry, biology etc. the mathematical models of which are nonlinear PDEs but the 

monotone type operators can not be applied to them. These equations need particular treatment. (see, e.g. [13], 

[18], [22], [23], [36], [38], [52], [65], [67]). 

The lecture notes are based mainly on the theory of second order linear partial differential equations (see, e.g., 

[67], [27]), some fundamental notions and theorems of functional analysis (see, e.g., [42], [66], [92], [8]) and 

the theory of ordinary differential equations (see, e.g., [88], [19], [35]). The importance of linear and nonlinear 

partial differential equations in physical, chemical, biological etc. applications is well known (see, e.g., the 

above references). The classical results on linear and quasilinear second order partial differential equations can 

be found in the monographs [28], [31], [37], [44], [51], [43], [49] and also in the books [7], [27], [60], [62], 

[64], [67], [89]. 

Partial functional differential equations arise in biology, chemistry, physics, climatology (see, e.g., [13], [18], 

[21]–[23], [36], [38], [52], [65], [91] and the references therein). The systematic study of such equations from 

the dynamical system and semigroup point of view began in the 70s. Several results in this direction can be 

found in the monographs [60], [89], [91]. This approach is mostly based on arguments used in the theory of 

ordinary differential equations and functional differential equations (see [24], [32]–[34], [58], [59]). 

In the classical work [50] of J.L. Lions one can find the fundamental results on monotone type operators and 

their applications to nonlinear partial differential equations. Further important monographs have been written by 

E. Zeidler [93] and H. Gajewski , K. Gröger , K. Zacharias [30], S. Fučik , A. Kufner in [29]. A good summary 

of further results on monotone type operators, based on degree theory (see, e.g., [20]) and its applications to 

nonlinear evolution equations is in the works [8] and [57] of V. Mustonen and J. Berkovits . By using the theory 

of monotone type operators one obtains directly the global existence of weak solutions, also for higher order 

nonlinear partial differential equations, satisfying certain conditions which are more restrictive (in some sense) 

than in the case of the previous approach. 

It turned out that one can apply the theory of monotone type operators (e.g. pseudomonotone operators) to 

nonlinear elliptic variational inequalities, further, to nonlinear parabolic and certain hyperbolic functional 

differential equations and systems to get existence and uniqueness theorems on weak solutions and results on 

qualitative properties of weak solutions, including, e.g., “strongly nonlinear” and “non-uniformly” parabolic 

equations. 

In Chapter 1 we shall consider nonlinear stationary problems and as particular cases nonlinear elliptic 

differential equations, functional equations and variational inequalities. In Chapter 2 first order evolution 

equations and as particular cases nonlinear parabolic differential equations, functional parabolic equations will 

be considered. Finally, in Chapter 3 second order nonlinear evolution equations and certain nonlinear hyperbolic 

equations will be treated. In each chapter the “general” results are illustrated by examples. 

In this section we shall give a motivation of the abstract stationary problem and we shall formulate it, by using 

the definition of the “weak” (“generalized”) solution to boundary value problems for nonlinear elliptic equations 

of “divergence type”. 

First we recall the definition of the weak solution to the linear elliptic equation of the form 
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Equation 1.1. (1.1) 

 

( ) with the Dirichlet boundary condition 
 

Equation 1.2. (1.2) 

 

Assuming that  is a sufficiently smooth (for simplicity, e.g. ) solution of (1.1), (1.2) and  is 

sufficiently smooth (e.g.  or in some sense piecewise  surface), multiply (1.1) by a test function  

and integrate over , by using Gauss’s theorem , we obtain 

Equation 1.3. (1.3) 

 

Assuming  and , (1.3) holds for arbitrary element  of the Sobolev space  (See, 

e.g. [67].) Therefore, weak solution of the Dirichlet problem (1.1), (1.2) is defined as a function , 

satisfying (1.3) for all  and the boundary condition (1.2) where  means the trace of . 

In the particular case when , the weak solution of (1.3) is a function . 

Thus every classical solution  of (1.1), (1.2) is a weak solution and it is not difficult to show that if  

is a weak solution and it is sufficiently smooth (e.g. ), then  is a classical solution, too. The details 

of the above arguments can be found e.g. in [67], [44]. 

The weak solution of the nonlinear equation of “divergence form” 
 

Equation 1.4. (1.4) 

 

( ) with the Dirichlet boundary condition (1.2) is defined in a similar way. Assume that  

is a classical (sufficiently smooth) solution of (1.4). Multiply the equation (1.4) by a test function  

and integrate over . By Gauss’s theorem we obtain 
 

Equation 1.5. (1.5) 

 

 

Later we shall see that if the functions  satisfy a certain growth condition (see later Condition ) then for an 

arbitrary element  of the Sobolev space ( ) (see the definition e.g. in [67], [1], [93]) we have 

 where . Consequently, (1.5) holds for all test functions  

because  is the closure of  with respect to the norm of . 
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Thus, similarly to the linear case, the weak solution of (1.4), (1.2) is defined as a function  

satisfying (1.5) for all  and (1.2) where  denotes the trace of  on . In the 

particular case  the weak solution is a function  satisfying (1.5) for all . 

Similarly to the linear case, a sufficiently smooth function  is a classical solution if and only if it is a weak 

solution. 

Assume that the functions  fulfil the above mentioned growth condition such that  for all 

. Then equation (1.5), i.e. the fact that  is a weak solution (in the case ) can be interpreted in 

the following way. Denote the left hand side of (1.5) by , i.e. 
 

Equation 1.6. (1.6) 

 

 

For a fixed ,  is a linear continuous functional applied to , i.e.  belongs 

to the dual space of . Thus, according to (1.6), we have a (nonlinear) operator . 

Further, by using the notation 
 

Equation 1.7. (1.7) 

 

we have  if . 

Summarizing, in the case  one may write (1.5) in the abstract form 
 

Equation 1.8. (1.8) 

 

where  is a nonlinear operator and  is a given element of . 

In Section 3 we shall show that in the case  equation (1.8) is an abstract form of weak formulation 

of (1.4) with a Neumann type homogeneous boundary condition. 

In the next section we shall formulate and prove existence and uniqueness theorems regarding (1.8), by using 

the theory of monotone type operators. 

2.  2 Existence and uniqueness theorems 

First we formulate some basic definitions for (possibly nonlinear) operators . Denote by  a real 

Banach space and  its dual space. 

Definition 2.1. 

Operator  is called boundedif it maps bounded sets of  into bounded sets of . 

Definition 2.2. 

Operator  is said to be hemicontinuousif for each fixed  the function 
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Definition 2.3. 

Operator  is said to be monotoneif 

 

If for  

 

 is said to be strictly monotone. 

Definition 2.4. 

A bounded operator  is said to be pseudomonotoneif 
 

Equation 1.9. (2.1) 

 

imply 
 

Equation 1.10. (2.2) 

 

Proposition 2.5. 

Let  be a reflexive Banach space. Assume that  is bounded, hemicontinuous and 

monotone. Then  is pseudomonotone. 

Proof. 

Assume (2.1). Since  is monotone, 

 

hence 
 

Equation 1.11. (2.3) 

 

By (2.1), we have 
 

Equation 1.12. (2.4) 

 

thus (2.1), (2.3), (2.4) imply 
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Equation 1.13. (2.5) 

 

In order to show the second part of (2.2) consider 
 

Equation 1.14. (2.6) 

 

with arbitrary  and . Since  is monotone, 

 

whence 

 

or equivalently 
 

Equation 1.15. (2.7) 

 

By (2.1), 

 

and so (2.5), (2.7) imply 

 

thus, due to  
 

Equation 1.16. (2.8) 

 

Since  is hemicontinuous, as  we obtain from (2.8) 
 

Equation 1.17. (2.9) 

 

The sequence  is bounded in , so there is a subsequence  of  which is 

weakly convergent to some , thus from (2.9) we obtain 
 

Equation 1.18. (2.10) 

 

As (2.10) holds for arbitrary , it follows .Thus the second part of (2.2) holds 

for a subsequence of . We show that it must hold for the whole sequence, by using the 

following trick. 
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Cantor’s trick  Assume the contrary. Then there exist , a subsequence  of  and 

 such that 
 

Equation 1.19. (2.11) 

 

Applying the above argument to the sequence  (instead of ), we obtain a subsequence 

 of  for which 

 

which contradicts to (2.11). □ 

Definition 2.6. 

Operator  is called demicontinuousif 

 

Proposition 2.7. 

If a bounded operator  is pseudomonotone then  is demicontinuous. 

Proof. 

Assume that  strongly in . Then 

 

because  is bounded. Since  is pseudomonotone, 

 

□ 

Definition 2.8. 

Operator  is called belonging to if 

 

imply  strongly in . 

From definitions 2.4, 2.6, 2.8 immediately follows 

Proposition 2.9. 

If  is bounded, demicontinuous and belongs to  then  is pseudomonotone. 

Definition 2.10. 

Operator  is called coerciveif 

 

Remark 2.11. 
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If the linear operator  is strictly positive in the sense that it satisfies 

 

with some constant  then  is coercive. 

Now consider the equation 
 

Equation 1.20. (2.12) 

 

with an arbitrary  where  is a given (possibly nonlinear) operator. First we prove an 

existence theorem when  is pseudomonotone. As a consequence, we shall obtain an existence and uniqueness 

theorem when  is strictly monotone. 

Theorem 2.12. 

Let  be a reflexive separable Banach space. Assume that  is bounded, 

pseudomonotone and coercive. Then for arbitrary  there exists a solution  of 

equation (2.12). 

The proof of this theorem is based on Galerkin’s method and on the following lemma. 

Lemma 2.13. 

(“acute angle lemma”) Let  be a continuous function and suppose: there exists 

 such that 
 

Equation 1.21. (2.13) 

 

Then there exists  such that 
 

Equation 1.22. (2.14) 

 

Proof. 

We prove by contradiction. Assume that (2.14) is not true. Then  for  and thus 

 

is a continuous function mapping the closed ball  into itself, because 

. By Brouwer’s fixed point theorem  has a fixed point , i.e. 

 

Then 

 

which is impossible since by (2.13) 
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□ 

Proof of Theorem 2.12. 

Since  is separable, there exists a system  of linearly independent elements of  

such that their linear combinations are dense in . Denote by  the set of linear 

combinations of . 

First by using Galerkin’s approximation method , we construct the “ -th approximation” 

 of the solution  of (2.12) such that 
 

Equation 1.23. (2.15) 

 

or equivalently 
 

Equation 1.24. (2.16) 

 

In order to do this, we apply Lemma 2.13 to the function , defined by 

 

Since  is bounded and pseudomonotone,  is demicontinuous by Proposition 2.7 which 

implies that the functions  are continuous. Further, introducing  by  and 

assuming , we have 

 

 

Operator  is coercive, hence 

 

thus the right-hand side is positive if  is sufficiently large, which is satisfied if  is 

sufficiently large. So by Lemma 2.13 there exists  such that , i.e. we have a 

solution  of (2.15). 

If  is of finite dimension, Theorem 2.12 is proved. Consider the remaining case when  is of 

infinite dimension. Then we have a sequence  of elements satisfying (2.16). The 

coercivity of  implies that  is a bounded sequence in . Indeed, assuming that  is 

not bounded, we would have a subsequence  such that 

 

which is impossible because by (2.16) 
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as  since  is coercive. 

The operator  is bounded thus the sequence  is bounded in . Since  is 

reflexive, there are ,  and a subsequence  of  such that 
 

Equation 1.25. (2.17) 

 

and 
 

Equation 1.26. (2.18) 

 

Now we show that . Due to (2.16), for arbitrary fixed finite linear combination  of 

 
 

Equation 1.27. (2.19) 

 

for sufficiently large . From (2.18), (2.19) as  we obtain  for any finite 

linear combination of . Since the finite linear combinations are dense in , we find 

. 

Finally, pseudomonoticity of  implies . Indeed, according to (2.17), 

 weakly in  and by (2.16), (2.18) 
 

Equation 1.28. (2.20) 

 

 

□ 

Theorem 2.14. 

Let  be a reflexive separable Banach space and assume that  is bounded, 

hemicontinuous, monotone and coercive. Then for arbitrary  there exists a solution 

 of (2.12). If  is strictly monotone then the solution is unique.  

Proof. 

By Proposition 2.5  is pseudomonotone, thus Theorem 2.12 implies the existence of a 

solution  of (2.12). Assume that  is strictly monotone and 

 

Then 

 

whence . □ 
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Definition 2.15. 

Operator  is said to be uniformly monotoneif there exists a strictly monotone 

increasing continuous function 

 

such that 

 

Remark 2.16. 

If  is uniformly monotone then it is strictly monotone. Function  may be chosen as 

 with constants . 

Remark 2.17. 

If  is uniformly monotone then 
 

Equation 1.29. (2.21) 

 

because 

 

 

If (2.21) holds then operator  is called stable. In this case the solution of the equation (2.12) 

is unique and the solution  of (2.12) depends continuously on the right hand side , 

because by (2.21) 

 

 is a continuous function and . 

Remark 2.18. 

According to the proof of Theorem 2.12 the sequence , constructed by Galerkin’s method, 

contains a subsequence which converges weakly in  to a solution  of (2.12). If the solution 

of (2.12) is unique (e.g. if  is strictly monotone) then also the sequence  must converge 

to . Indeed, assuming the contrary, one gets contradiction, by using Cantor’s trick (see in the 

proof of Proposition 2.5). 

If  is uniformly monotone then  also with respect to the norm of . Indeed, let 

 which clearly has the same properties as , further, 

 

 

by (2.17), (2.20), hence 

 

3.  3 Application of monotone operators 
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Now we shall apply Theorem 2.14 to the case when  is a closed linear subspace of the Sobolev space , 

containing  ( ,  is a bounded domain with sufficiently smooth boundary). Further, the 

operator  will be given by 
 

Equation 1.30. (3.1) 

 

 

where the functions  satisfy conditions which will imply the assumptions of Theorem 2.14. 

( ) Assume that the functions  satisfy the Carathéodory conditions , i.e. for a.a. fixed 

, the function ,  is continuous and for each fixed , ,  is 

measurable. 

( ) Assume that there exist a constant  and a nonnegative function  ( ) such that for 

a.a, , each  

 

Proposition 3.1. 

Assume that conditions ( ), ( ) are satisfied. Then  is bounded and 

hemicontinuous. 

Proof. 

By ( ) the function  is measurable for arbitrary . Further, by (

) 

 

 

and so Hölder’s inequality implies 
 

Equation 1.31. (3.2) 

 

 

By (3.2) it follows that  is a bounded linear operator on  and 

 

thus  is bounded. 

Now we show that  is hemicontinuous. Consider with fixed  the function 
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For the operator , given by (3.1) we have 

 

 

Assume that  for a sequence . Then by ( ) for a.a.  

 

further, by ( ) 
 

Equation 1.32. (3.3) 

 

 

 

because  is bounded. Thus by Young’s inequality 

 

 

and similar inequality holds for 

 

Thus by (3.3) Lebesgue’s dominated convergence theorem implies 

 

which completes the proof of Proposition 3.1. □ 

Now we formulate assumptions which, clearly, imply that operator , defined by (3.1) is monotone and 

coercive. 

( ) Assume that for a.a. , all  

 

( ) Assume that there exist a constant  and  such that for a.a. , all  

 

Remark 3.2. 

Assumption ( ) implies that for any , 
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Equation 1.33. (3.4) 

 

Now we formulate particular cases when ( ) and ( ) are fulfilled. First observe that ( )–( ) are satisfied 

in the simple case: 
 

Equation 1.34. (3.5) 

 

where the Carathéodory function  satisfies the following conditions for all , a.a. : 
 

Equation 1.35. (3.6) 

 

 

Equation 1.36. (3.7) 

 

with some positive constants . Thus, by Theorem 2.14 there exists a solution  of equation (2.12) if 

(3.5)-(3.7) hold. 

Proposition 3.3. 

Assume that the functions  satisfy ( ), for a.e. , the functions  are 

continuously differentiable and the matrix 
 

Equation 1.37. (3.8) 

 

Then ( ) is fulfilled, thus , defined by (3.1) is monotone. 

Proof. 

For arbitrary fixed ,  define function  by 

 

Then 

 

 

hence by (3.8) 
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Equation 1.38. (3.9) 

 

 

□ 

Proposition 3.4. 

Assume that conditions of Proposition 3.3 are fulfilled such that for a.e. , each 

 
 

Equation 1.39. (3.10) 

 

with  and some positive constant . Then  

Equation 1.40. (3.11) 

 

with some constant . 

Proof. 

By (3.9), (3.10) 
 

Equation 1.41. (3.12) 

 

 

 

Now we show that there is a constant  (depending only on ) such that 
 

Equation 1.42. (3.13) 

 

Clearly, for  (3.13) holds. For  we have 
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By using the notation , we have to show that there is a constant , not 

depending on  such that 
 

Equation 1.43. (3.14) 

 

In the case  
 

Equation 1.44. (3.15) 

 

 

where we used inequality 

 

In the case when  or ,  has the same sign for all , thus 
 

Equation 1.45. (3.16) 

 

Inequalities (3.15), (3.16) imply (3.14) and so we have shown (3.13). Consequently, from 

(3.12) we obtain 

 

which completes the proof of (3.11). □ 

From Proposition 3.4 immediately follows 

Theorem 3.5. 

Assume that the conditions of Proposition 3.4 and ( ), ( ) are fulfilled. Then operator , 

defined by (3.1) has the property such that for all  
 

Equation 1.46. (3.17) 

 

with some positive constant . 

Remark 3.6. 
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If (3.17) is satisfied, the operator  is uniformly monotone. (See the Definition 

2.15.) Thus the solution of (2.12) depends continuously on , in this case for the solutions of 

,  we have 

 

Further, according to Remark 2.18, the sequence , constructed by Galerkin’s method, 

converges to the solution  with respect to the norm of . 

In the case when  is defined by (3.1) and (3.17) holds,  is called strongly elliptic. 

Remark 3.7. 

Clearly, (3.17) implies that  is strictly monotone. Further, the assumptions of Theorem 3.5 

imply that  is coercive, too. Indeed, 

 

which implies that  is coercive since . 

Example 3.8. 

A typical example satisfying the conditions of Theorem 3.5 is 

 

where  is the -Laplacian operator , defined by 
 

Equation 1.47. (3.18) 

 

In this case the functions  are defined by 
 

Equation 1.48. (3.19) 

 

where we used the notation  Now we show that the inequality (3.10) holds in 

this case. For ,  

 

 

 

hence 
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Now consider operator , defined by (3.1) with the functions (3.19). Clearly, ( ), ( ) are fulfilled and by 

Theorem 3.5 we have (3.17). 

Remark 3.9. 

Consider the case  for a bounded domain . Then the norm in  is 

equivalent with the norm 

 

(For the particular case  see, e.g. [67], for the general case see [1].) Therefore, 

conditions of Theorem 3.5 are fulfilled for , i.e. for . 

Remark 3.10. 

In Section 1 we have shown that if  is a solution of (2.12) with the operator (3.1), 

 then we may consider  as a weak solution of the equation (1.4) with 

homogeneous Dirichlet boundary condition. The case of nonhomogeneous boundary condition 

 can be reduced to a problem with  boundary condition for  if there exits 

a function  with the property . 

Remark 3.11. 

If  is a solution of (2.12) with the operator (3.1) and  then  can be considered 

as a weak solution of (1.4) with the following homogeneous Neumann type boundary 

condition : 
 

Equation 1.49. (3.20) 

 

By using Gauss’s theorem it is easy to show that a function  satisfies the boundary 

value problem (1.4), (3.20) (with sufficiently smooth functions ) if and only if  is a solution 

of (2.12) with the operator  (which is a modification of (3.1)): 

 

, 

 

and . Indeed, assuming that  satisfies (1.4), (3.20) (with sufficiently 

smooth functions ), multiplying (1.4) by  and integrating over , we obtain by 

(3.20) 
 



 NONLINEAR STATIONARY 

PROBLEMS 
 

 18  
Created by XMLmind XSL-FO Converter. 

Equation 1.50. (3.21) 

 

 

 

 

Further, when  satisfies , first apply 
 

Equation 1.51. (3.22) 

 

to . Then from (3.21) we obtain 

 

which implies (1.4) since  is dense in . Then apply (3.22) to , by using 

(1.4), (3.21) we find 

 

which implies (3.20) since the restrictions of functions  are dense in . 

3.1.  Problems 

1.  

Prove that for the functions (3.5), satisfying (3.6), (3.7), the assumptions ( )–( ) are fulfilled. 

2.  

Let  be measurable functions satisfying 

 

with some positive constants . By using Example 3.8, show that 

 

 

satisfy the assumptions of Theorem 3.5. 

3.  

Define the weak solution of the Dirichlet problem 
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as a function  satisfying 

 

 

where  and  denotes the trace of  on the boundary . 

Show that (for “sufficiently good”) functions , a function  is a classical solution of the above 

Dirichlet problem if and only if it is a weak solution. 

4.  

Prove that if the assumptions of Theorem 3.5 are fulfilled and there exists  such that 

 then for each  there exists a unique weak solution of the Dirichlet problem (in 

Problem 3) with nonhomogeneous boundary condition. (See Remark 3.10.) 

4.  4 Application of pseudomonotone operators 

Here we shall formulate more general conditions than ( ) (they are natural generalizations of ellipticity in the 

linear case) which will imply that the operator (3.1) is pseudomonotone. In the proof we shall apply the 

following two theorems. 

Theorem 4.1. 

Let  be a bounded domain with a sufficiently smooth boundary, . Then 

 is compactly imbedded into . 

The exact formulation on smoothness of  and the proof of the above theorem can be found in [1]. 

Remark 4.2. 

Later we shall apply the following statements, too. Let  be a bounded domain with 

sufficiently smooth boundary. Then  is compactly imbedded into  for 

arbitrary . Further, the trace operator  is bounded if 

 

Theorem 4.3. 

(Vitali’s theorem) Let  be a Lebesgue measurable set. Assume that the functions 

 are Lebesgue integrable, further, for a.a. ,  exists and is 

finite. The functions  are equiintegrable in the following sense: for arbitrary  there 

exist  and  of finite measure such that for all  

 

Then 
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Remark 4.4. 

It is easy to show that if  in  then the functions  are equiintegrable. Further, 

by Hölder’s inequality one obtains: if  is equiintegrable and is bounded in  (

) then  is eqiintegrable. 

First we formulate simple cases when Theorems 4.1 and 4.3 imply that operator (3.1) is pseudomonotone. 

Theorem 4.5. 

Assume that  is a bounded domain,  is sufficiently smooth and functions , 

satisfying ( ), ( ) have the particular form 

 

 

and instead of assumption ( ) we assume 
 

Equation 1.52. (4.1) 

 

Then the (bounded) operator  (defined by (3.1)) is pseudomonotone. 

Proof. 

Assume that 
 

Equation 1.53. (4.2) 

 

Since  is bounded in , by Theorem 4.1 there is a subsequence  of  which 

converges to  with respect to the norm of  and a.e. in . 

Define operator  by 

 

Then (4.1) implies that  is monotone and by ( ), ( )  is hemicontinuous and 

bounded. Consequently, from Proposition 2.5 it follows that  is pseudomonotone. Further, 
 

Equation 1.54. (4.3) 

 

Since 

 

and by ( ) 
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Hölder’s inequality implies 
 

Equation 1.55. (4.4) 

 

Thus we obtain from (4.2) 
 

Equation 1.56. (4.5) 

 

Since  is pseudomonotone, (4.2), (4.5) imply 
 

Equation 1.57. (4.6) 

 

 

Equation 1.58. (4.7) 

 

By (4.3), (4.4), (4.6) 
 

Equation 1.59. (4.8) 

 

Finally,  a.e., so by ( ) 

 

By using Hölder’s inequality, one shows that for a fixed , the sequence of functions 

 

is equiintegrable (the  norm of the term in brackets is bounded). Thus by Theorem 4.3 

 

and so from (4.7) we obtain that 
 

Equation 1.60. (4.9) 

 

(4.8), (4.9) hold for the sequence , too. Because, assuming that it is not true, by using 

Cantor’s trick, we get a contradiction. □ 
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Now we formulate other conditions which imply that operator  of the form (3.1) is pseudomonotone. Instead 

of ( ) assume 

( ) There exists a constant  such that for a.a. , all ,  

 

Theorem 4.6. 

Assume that  is a bounded domain,  is sufficiently smooth and ( ), ( ), ( ) 

hold. Then operator  of the form (3.1) is bounded and pseudomonotone. 

Proof. 

According to Proposition 3.1  is bounded. Now we show that  is pseudomonotone. Assume 

that 
 

Equation 1.61. (4.10) 

 

Since  is compactly imbedded into  (for bounded  with sufficiently smooth 

boundary, see Theorem 4.1), there is a subsequence of , again denoted by , such that 
 

Equation 1.62. (4.11) 

 

Since  is bounded in , we may assume (on the subsequence) that 
 

Equation 1.63. (4.12) 

 

Further, 
 

Equation 1.64. (4.13) 

 

 

 

The first term on the right-hand side of (4.13) tends to  by (4.11) and Hölder’s inequality, 

because the multipliers of  are bounded in  (by ( )). Further, the third term on 

the right-hand side converges to , too, by (4.12) and because (4.11), ( ), ( ) and Vitali’s 

theorem (Theorem 4.3) imply that 
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Consequently, (4.10), (4.13) imply 
 

Equation 1.65. (4.14) 

 

From ( ), (4.14) we obtain 
 

Equation 1.66. (4.15) 

 

and (for a subsequence) 
 

Equation 1.67. (4.16) 

 

Therefore, by ( ), ( ), (4.11), (4.15), (4.16) and Vitali’s theorem (Theorem 4.3) 

 

Thus by Hölder’s inequality 
 

Equation 1.68. (4.17) 

 

Finally, from (4.11), (4.15) and ( ) one gets 
 

Equation 1.69. (4.18) 

 

Since (4.17), (4.18) hold for a subsequence of , by using Cantor’s trick, we obtain (4.17), 

(4.18) for the original sequence. □ 

Remark 4.7. 

According to the proof of the above theorem operator  belongs to the class  and it is 

demicontinuous. 

4.1.  Browder’s theorem 

 

The following more general theorem is due to F. Browder (see [14]). Instead of ( ), ( ) we assume that 

( ) for a.a. , all ; ,  
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where we used the notations , . 

Remark 4.8. 

In the linear case assumption ( ) means ellipticity. 

( ) There exist a constant  and  such that 

 

Theorem 4.9. 

Assume ( ), ( ), ( ), ( ). Then the (bounded) operator , defined by (3.1) with an 

arbitrary (possibly unbounded) domain , is pseudomonotone. 

Proof. 

Assume (4.2), i.e. 
 

Equation 1.70. (4.19) 

 

We have to show that 
 

Equation 1.71. (4.20) 

 

We shall show that (4.20) holds for a suitable subsequence of , by Cantor’s trick this will 

imply (4.20) for , too. 

Assume that  is a sequence of bounded domains with sufficiently smooth boundary  

such that  and . By Theorem 4.1 for arbitrary fixed  there is a 

subsequence of  which is convergent in  and so a subsequence of this subsequence 

is a.e. convergent to  in . By using a “diagonal process” one obtains a subsequence of  

which converges to  a.e. in . For simplicity, we shall denote this subsequence also by , 

so we have 
 

Equation 1.72. (4.21) 

 

The main part of the proof of our theorem is showing 
 

Equation 1.73. (4.22) 

 

Set 
 

Equation 1.74. (4.23) 
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then 

 

and so by (4.19) 
 

Equation 1.75. (4.24) 

 

Due to (4.23) we have 
 

Equation 1.76. (4.25) 

 

where 
 

Equation 1.77. (4.26) 

 

 

By ( ) 
 

Equation 1.78. (4.27) 

 

 

thus Hölder’s inequality implies that the sequence  is equiintegrable. (See Remark 4.4.) 

Further, by Young’s inequality from (4.27) we obtain that for arbitrary  there exist a 

constant  and a function  such that 
 

Equation 1.79. (4.28) 

 

Choosing sufficiently small , one obtains from ( ), (4.25), (4.28) 
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Equation 1.80. (4.29) 

 

 

with some constant  and . Let 

 

then by (4.29) 

 

where the sequence on the right hand side is equiintegrable, hence the sequence 
 

Equation 1.81. (4.30) 

 

Now we show that  converges to  a.e. in . Indeed,  can be written in the form 
 

Equation 1.82. (4.31) 

 

where 

 

 

 

Denote by  the characteristic function of the set  then 
 

Equation 1.83. (4.32) 

 

By (4.29) 

 

hence by (4.21) the sequence  is bounded for a.a. fixed . Thus by (4.21), ( ) 

 

Since  a.e., it follows from (4.32) 
 

Equation 1.84. (4.33) 
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Thus by (4.30) and Vitali’s theorem 
 

Equation 1.85. (4.34) 

 

Since , from (4.24), (4.34) we obtain 
 

Equation 1.86. (4.35) 

 

From (4.34), (4.35) it follows  and so by (4.23) we obtain the first part of 

(4.20): 

 

 

By (4.35) 

 

(again denoted by , for simplicity). Thus (4.33) implies that 
 

Equation 1.87. (4.36) 

 

Hence (4.29) implies that for a.a. fixed  the sequence  is bounded. 

Consider such a fixed . Assuming that (4.22) is not valid, we have a subsequence of 

, (again denoted by , for simplicity), which converges to some 

. Since 

 

we obtain that 

 

Thus by ( ) we obtain  which contradicts to . So we have shown 

(4.22). 

Hence we obtain the second part of (4.20), by using Vitali’s theorem: for arbitrary fixed  
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because the sequence of integrands is equiintegrable by ( ) and Hölder’s inequality, further, 

the a.e. convergence follows from ( ), (4.21), (4.22). □ 

Remark 4.10. 

According to the proof of the above theorem,  belongs to the class  if  is bounded and 

it is demicontinuous. 

Remark 4.11. 

If instead of ( ) we assume ( ), we obtain that  is coercive, too and we have existence of 

solutions for arbitrary . In the particular case when  is bounded and , (

) implies that  is coercive (see Remark 3.9). 

Remark 4.12. 

F.E. Browder proved in [14] the following generalization of Theorem 4.9. Let  

be a closed linear subspace ( , ,  arbitrary, possibly unbounded 

domain) where  denotes the Sobolev space of (real valued) measurable functions 

 with the norm 

 

, . (For the detailed investigation of Sobolev spaces see, e.g., 

[1].) Define operator  by the formula 
 

Equation 1.88. (4.37) 

 

where  and functions  (depending on a multiindex ) satisfy the natural 

generalizations of ( ), ( ), ( ), ( ). Then  is pseudomonotone. 

A similar generalization of Theorem 4.6 can be formulated and proved for higher order 

nonlinear elliptic equations. 

The proofs of the generalizations are similar to that of Theorems 4.9, 4.6, respectively. 

Example 4.13. 

A simple example satisfying the assumptions of Theorem 4.4, where  is coercive is: 

 

where the function  satisfies ( ), ( ) and 
 

Equation 1.89. (4.38) 

 

with some constant . If  is bounded and , instead of (4.38) it is sufficient 

to assume  (see Remark 3.9). 

4.2.  Nonlinear elliptic functional equations 
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Now we apply the theory of pseudomonotone operators to nonlinear elliptic functional equations with nonlinear 

and “non-local” third boundary conditions . Let  be a closed linear subspace ( ,  

a bounded domain with sufficiently smooth boundary). 

Definition 4.14. 

Define operator  by 
 

Equation 1.90. (4.39) 

 

 

Assume that the following conditions are fulfilled. 

( ) The functions  ( ) satisfy the Carathéodory conditions for arbitrary 

fixed  and  is measurable for each fixed . 

( ) There exist bounded (nonlinear) operators  and  such that 

 

for a.e. , each , . 

( ) The inequality 

 

holds where 
 

Equation 1.91. (4.40) 

 

and the constants  satisfy , . 

( ) The inequality 
 

Equation 1.92. (4.41) 

 

holds where  and  satisfy with some positive ,  
 

Equation 1.93. (4.42) 
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Equation 1.94. (4.43) 

 

(In the case  is considered to be identically .) 

( ) There exists  satisfying  such that if  weakly in  and strongly in , 

 in ,  in  then for a.a. ,  

 

for a subsequence and for a.a.  

 

for a suitable subsequence. 

Theorem 4.15. 

Assume ( ) – ( ). Then  is bounded, pseudomonotone and coercive. Thus 

for any there exists  satisfying . 

Proof. 

Clearly, ( ), ( ) and (4.43) imply that  is bounded, because the trace operator 

 is bounded by  (see [1]) and so by Hölder’s inequality 
 

Equation 1.95. (4.44) 

 

 

Assumption ( ) implies that  is coercive because by (4.44) 

 

 

as  since , , . 

Now we show (similarly to the proof of Theorem 4.6) that  is pseudomonotone. Assume that 
 

Equation 1.96. (4.45) 

 

Since  is compactly imbedded into  (for bounded  with sufficiently 

smooth boundary, see [1]), there is a subsequence of , again denoted by , for 

simplicity, such that 
 

Equation 1.97. (4.46) 
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and by ( ) 
 

Equation 1.98. (4.47) 

 

Since  is bounded in , we may assume (on the subsequence) that 
 

Equation 1.99. (4.48) 

 

Further, 
 

Equation 1.100. (4.49) 

 

 

 

The first and the fourth terms on the right hand side of (4.49) tend to  by (4.46) and Hölder’s 

inequality, because the multipliers of  are bounded in  and , respectively 

(by ( ) and (4.43)), and the trace operator  is continuous. Further, the 

third term on the right hand side converges to , too, by (4.48) because (4.45), (4.46), ( ), (

), ( ) and Vitali’s theorem (Theorem 4.3) imply that 

 

Consequently, (4.45), (4.49) imply 
 

Equation 1.101. (4.50) 

 

Since  is bounded in , from ( ), (4.50) we obtain 
 

Equation 1.102. (4.51) 

 

and (for a subsequence) 
 

Equation 1.103. (4.52) 
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Therefore, by ( ), ( ), ( ), (4.45), (4.46), (4.52) and Vitali’s theorem (Theorem 4.3) 

 

Thus by Hölder’s inequality, (4.44), (4.47) and Vitali’s theorem 
 

Equation 1.104. (4.53) 

 

Finally, from (4.44), (4.46), (4.51) and ( ) one gets 
 

Equation 1.105. (4.54) 

 

Since (4.53), (4.54) hold for a subsequence of , by using Cantor’s trick, we obtain (4.53), 

(4.54) for the original sequence. 

So we have proved that  is bounded, pseudomonotone and coercive, thus Theorem 2.12 

implies Theorem 4.15. □ 

Remark 4.16. 

The solution  of the equation  with operator (4.39) can be considered as weak 

solution of the equation 
 

Equation 1.106. (4.55) 

 

with the “non-local” third boundary condition 
 

Equation 1.107. (4.56) 

 

Indeed, by using Gauss’s theorem, it is easy to show that a function  satisfies the 

boundary value problem (4.55), (4.56) (with sufficiently smooth  if and only if 

 is a solution of  with operator (4.39),  and . (See 

Remark 3.11.) 

By using the Rellich-Kondrashov compact imbedding theorem, one is able to prove an existence theorem on 

equation  for the operator (4.39) with a more general growth condition than ( ). The Rellich-

Kondrashov theorem with respect to the space  says (see, e.g., [1]): 

Theorem 4.17. 

Let  be a bounded domain with “sufficiently good” boundary (  has the “cone 

property”, see [1]); 
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Then  is compactly imbedded into . 

Now instead of ( ) assume 

( ) There exist bounded (nonlinear) operators  and  such that for  

 

 

where  is defined in Theorem 4.17,  and  is a bounded operator. 

Theorem 4.18. 

Assume ( ), ( ), ( )–( ). Then the operator, defined by (4.39) is bounded, 

pseudomonotone and coercive. Thus for any  there exists  satisfying . 

The proof is similar to that of Theorem 4.15. Applying Hölder’s inequality also in , , we obtain by 

Theorem 4.17 that  is bounded. Further, one proves that the first and third terms on the right hand 

side of (4.49) converge to , by using Hölder’s inequality also in ,  and Vitali’s theorem. Finally, 

proving (4.53), we apply Vitali’s theorem and Hölder’s inequality also in , . 

Example 4.19. 

Now we formulate examples satisfying ( )–( ) (i.e. assumptions of Theorem 4.15). Set 

 

 

 

where  are Carathéodory functions and they satisfy 

 

with some constants , , 

 

 

 

Finally, 

 

are linear continuous operators. Clearly, assumptions ( ) – ( ), ( ) are fulfilled, we 

have to show only the estimate ( ) for the second term in . By Young’s 

inequality 

 

 

where 
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Consequently, we obtain for this term ( ) with 

 

since by Hölder’s inequality we have for this term 

 

 

where 

 

Now we prove that ( ) holds. Clearly, for our example we have in (4.40) 

 

Further, by Young’s inequality 

 

 

for any  (because ) where 

 

and  is a constant, depending on . Choosing sufficiently small , we obtain ( ) 

with 

 

since 

 

 

 

with  where 

 

because  and thus . 

If functions  are between two positive constants then, clearly, ( ) – ( ) are fulfilled 

when 
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are continuous linear operators (as ). So in this case ,  (and ) 

may have also e.g. the forms 

 

or  where  are continuously differentiable. 

Finally, 

 

 

which implies (4.43). 

4.3.  Problems 

1.  

Prove Remark 4.7. 

2.  

Show that the Example 4.13 satisfies the assumptions of Theorem 4.6. 

3.  

Prove Theorem 4.18. 

4.  

Assume that the functions  satisfy the conditions ( ), ( ), ( ), ( ) and there exists  

such that . Prove that then for each  there exists a weak solution of the Dirichlet 

problem with nonhomogeneous boundary condition, considered in Problem 3 in Section 3. (See Remark 

3.10.) 

5.  

Let  be a closed linear subspace of  ( ) and consider the operator (4.37). Denote 

by  the number of multiindices  satisfying . Assume that the functions 

 satisfy the Carathéodory conditions, i.e. 

 

 

Further, there exist a constant  and a function  such that 

 

Prove that then the operator (4.37) is bounded. 

6.  
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Consider the operator (4.37) satisfying the assumptions of Problem 5. Denote by  the number of 

multiindices  satisfying . Assume that there exists a positive constant  such that 
 

Equation 1.108. (4.57) 

 

for a.a. , all , . By using the arguments of the proof of Theorem 4.6, prove that 

the bounded operator  is pseudomonotone. 

7.  

By using Proposition 3.4 formulate conditions, which imply the inequality (4.57). 

8.  

Formulate assumptions on functions  which imply that the operator A defined by (4.37) is coercive. Show 

that the solution of  can be considered as a weak solution of the equation 

 

with homogeneous Dirichlet conditions on  if  and with homogeneous Neumann conditions 

if . 

9.  

Let  be a closed linear subspace of  ( ) and define the operator  by 

 

Prove that  is bounded, demicontinuous, uniformly monotone, satisfies (3.17) and, consequently,  is 

coercive. 

10.  

Consider the operator (4.37) with , . By using the notations of Problem 5, assume that 

the functions  have the form 

 

and for  the functions  satisfy the assumptions of Problem 5, further, 

 

By using the fact that in  

 

is equivalent to the original norm, show that  is bounded, pseudomonotone and coercive. 

5.  5 Nonlinear elliptic variational inequalities 

5.1.  Preliminaries 
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In order to explain the importance of elliptic variational inequalities , first consider the weak solution of the 

linear elliptic equation (1.1) with homogeneous Dirichlet boundary condition, i.e. a function  

satisfying for all  
 

Equation 1.109. (5.1) 

 

It is well-known (see, e.g., [67]) that if ,  satisfy the uniform ellipticity condition then 

the unique solution  of (5.1) is the unique function  which minimizes the quadratic 

functional 
 

Equation 1.110. (5.2) 

 

 

(Here  is a linear operator, .) 

Similarly, the weak solution of the Neumann problem with homogeneous boundary condition, i.e. the solution 

 of (5.1) for all , is the unique  where  attains its minimum in . 

By using similar arguments as in [67], one can show the following generalization of the above statements. 

Theorem 5.1. 

Let  be a closed convex subset of the real Hilbert space ,  be a bounded, 

strictly positive selfadjoint linear operator and . Then the quadratic functional 
 

Equation 1.111. (5.3) 

 

attains its minimum in  at  where  is the unique solution of the 

“variational inequality” 
 

Equation 1.112. (5.4) 

 

Proof. 

The functional  is bounded from below: 

 

 

Let  be a sequence such that 



 NONLINEAR STATIONARY 

PROBLEMS 
 

 38  
Created by XMLmind XSL-FO Converter. 

 

Equation 1.113. (5.5) 

 

As in [67], one can show that  is a Cauchy sequence in . Indeed, by using the 

parallelogram equality and (5.5), we obtain that for arbitrary  there exists  such that 

 implies 

 

 

Thus there is  such that . Since  and  is closed, we obtain 

. The continuity of  implies 
 

Equation 1.114. (5.6) 

 

The solution of (5.6) is unique, because if  then 

 

must be a Cauchy sequence according to the above argument. 

Now we show that  satisfies (5.4). Let  be an arbitrary fixed element and 

consider the function  defined by 

 

Since  is convex,  for all , hence 
 

Equation 1.115. (5.7) 

 

Since 

 

 

 

by (5.7) 

 

so we obtained that  satisfies (5.4). Since  is strictly positive, the solution of (5.4) is 

unique: assuming that  satisfies 

 

we have 
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The sum of these inequalities results 

 

because  is strictly positive. □ 

As a generalization of (5.4) for arbitrary Banach space  and nonlinear operator  we have the 

definition of an abstract elliptic variational inequality: 

Definition 5.2. 

Let  be a real Banach space,  a closed convex set,  a (nonlinear) 

operator, . Then the variational inequality is the following problem: find  

satisfying 
 

Equation 1.116. (5.8) 

 

Remark 5.3. 

In general, the variational inequality (5.8) is not connected with the minimum of a functional. 

Remark 5.4. 

In the particular case when  is a closed convex cone with the vertex , the variational 

inequality (5.8) holds if and only if 
 

Equation 1.117. (5.9) 

 

 

Equation 1.118. (5.10) 

 

From (5.9) we obtain that in the case  (5.8) is equivalent with the equality 

 

Indeed, from (5.8) with  and  we obtain 

 

respectively, i.e. we have (5.10). Further, subtracting the equality (5.10) from (5.9), we obtain (5.8). 

Now we formulate some examples for solutions of (5.8) which can be considered as weak solutions to boundary 

value problems for equation (1.1) with certain nonlinear boundary conditions. 

Example 5.5. 

Consider the linear operator (5.1) defined in  and set 
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Then  is a closed convex cone with vertex . 

Now we show that a solution  of (5.8) can be considered as a weak solution of the equation (1.1) with 

some nonlinear boundary condition. First assume that  is a sufficiently smooth (e.g. ) solution of 

(5.9), (5.10) with sufficiently smooth functions . Then by Gauss’s theorem for ,  
 

Equation 1.119. (5.11) 

 

 

Setting  and  in (5.11) with arbitrary , we obtain 
 

Equation 1.120. (5.12) 

 

Thus (5.11) implies for the “conormal derivative” 
 

 

 

for all  with , hence 
 

Equation 1.121. (5.13) 

 

and by  we have 
 

Equation 1.122. (5.14) 

 

Since , we obtain from (5.11) 

 

which implies by (5.13), (5.14) 
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Equation 1.123. (5.15) 

 

Summarizing, if  is a solution of the variational inequality (5.8) (i.e. (5.9), (5.10)) then  is a classical 

solution of the (linear) differential equation (5.12) with the nonlinear boundary conditions (5.13)–(5.15). 

Conversely, it is easy to show that a solution  of the boundary value problem (5.12)–(5.15) satisfies 

the variational inequality. Therefore, a function  satisfying the variational inequality (5.8), can be 

considered as a weak solution of (5.12)–(5.15). 

Example 5.6. 

Consider the operator (5.1) in  with 

 

Then  is a closed convex cone with vertex . 

Assume that  is a solution of (5.8) (i.e. of (5.9) and (5.10)). Let 

 

Consider an arbitrary function  and let  with some . Then, clearly,  for 

sufficiently small  (because  has a positive minimum on ) and so from 

 

we obtain the differential equation (5.10) as in the previous example. Further, since , 
 

Equation 1.124. (5.16) 

 

and, clearly, 
 

Equation 1.125. (5.17) 

 

Thus the smooth solution of (5.8) satisfies 
 

Equation 1.126. (5.18) 

 

the boundary conditions (5.16), (5.17) and 
 

Equation 1.127. (5.19) 

 

So a smooth solution  ( ) of (5.8) satisfies the boundary value problem (5.16)–(5.19) with “free 

boundary”. 
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It is easy to show that if  satisfies (5.16)–(5.19) then  is a solution of (5.8). 

5.2.  Existence theorems 

Now we formulate and prove two existence theorems on the variational inequality (5.8). 

Theorem 5.7. 

Let  be a real reflexive separable Banach space and  a closed, convex, bounded 

subset. Assume that  is bounded and pseudomonotone. Then for all there 

exists  which satisfies (5.8), i.e. 

 

Remark 5.8. 

By definition, a bounded operator  is called pseudomonotone if 
 

Equation 1.128. (5.20) 

 

imply 
 

Equation 1.129. (5.21) 

 

Proof of Theorem 5.7. 

Let  be linear subspaces of dimension  such that 

 

Further, let . Then  is a closed, convex, bounded set, 

 

First we show that for all  there exist solutions  of the (“finite dimensional”) 

variational inequalities 
 

Equation 1.130. (5.22) 

 

In the finite dimensional (Banach) space  define some scalar product  generating a norm 

which is equivalent with the original norm in . If  then the linear functional 

 

is continuous in the Hilbert space  (with the scalar product ), hence there exists a linear 

and continuous operator  such that 

 

Thus the inequality (5.22) can be written in the form 
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i.e. 
 

Equation 1.131. (5.23) 

 

Denote by  the operator, projecting  on to the convex set  with respect to the scalar 

product . Then inequality (5.23) is equivalent with 
 

Equation 1.132. (5.24) 

 

Consider the operator , defined by 
 

Equation 1.133. (5.25) 

 

Figure 1.1.  

 

Figure 1.1 

Inequality (5.23) 

We claim that  is continuous. It is sufficient to show weak continuity, as  is of finite 

dimension. Assume that  in . Since the bounded operator  is pseudomonotone, 

 is demicontinuous (Proposition 2.7), thus 

 

 

Brouwer’s fixed point theorem implies that the continuous map  has a fixed 

point, i.e. there is a solution  of (5.24). 

Now consider the sequence  of solutions to (5.24) (i.e. to (5.22)). Since , 

 is bounded and  is reflexive, there is a subsequence of , again denoted by  such 

that 
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Equation 1.134. (5.26) 

 

Since ,  is convex and closed, we have . Now we prove 
 

Equation 1.135. (5.27) 

 

As  is dense in , for arbitrary  there is  such that 
 

Equation 1.136. (5.28) 

 

Further,  for sufficiently large , thus by (5.22) 

 

hence by (5.28) and the boundedness of  

 

with some constant . By (5.26), (5.28), this inequality implies (5.27). 

Finally, since  is pseudomonotone, (5.26), (5.27) imply 
 

Equation 1.137. (5.29) 

 

(for a subsequence). For arbitrary fixed  the variational inequalities (5.22) can 

be written in the form 

 

By (5.26), (5.29), from this inequality we obtain as  
 

Equation 1.138. (5.30) 

 

Since  is dense in , (5.30) holds for arbitrary , i.e.  is a solution of (5.8). □ 

Now we formulate the extension of Theorem 5.7 to unbounded sets . 

Theorem 5.9. 

Let  be a reflexive separable Banach space and  a closed, convex subset. Assume that 

 is bounded, pseudomonotone and coercive in the following sense: there exists 

 such that 
 

Equation 1.139. (5.31) 
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Then for arbitrary there exists a solution  of (5.8). 

Proof. 

Set  and . Since  is a closed, convex, bounded 

set, by Theorem 5.7 there exists  with 
 

Equation 1.140. (5.32) 

 

Applying (5.32) to  and , we obtain by (5.31) 

 

hence 

 

where the right hand side is bounded if . Thus by (5.31)  is bounded for all 

. Consequently, there are a sequence , converging to  and  such that 
 

Equation 1.141. (5.33) 

 

Since , we have . According to (5.32), for any , sufficiently 

large  

 

thus 

 

hence by (5.33) 
 

Equation 1.142. (5.34) 

 

because  is pseudomonotone. 

Applying (5.32) with arbitrary fixed , , we obtain 

 

whence one obtains (by (5.33), (5.34)) as  

 

i.e.  satisfies (5.8). □ 
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Remark 5.10. 

If  is strictly monotone then the solution of (5.8) is unique. 

Indeed, assuming that  satisfies 

 

we obtain 

 

whence 

 

which implies . 

Remark 5.11. 

Similarly to Remark 2.17, it is easy to show that if  is uniformly monotone then the solution 

 of (5.8) depends on  continuously. Indeed, assuming 

 

we have 

 

If  is uniformly monotone then according to Definition 2.15 

 

thus 

 

where  is a continuous function and . 

5.3.  Problems 

1.  

Consider the operator (5.1) in  with 

 

where  are measurable functions. By using the arguments in Example 5.6, show that in this case the 

solution of the variational inequality (5.8) can be considered as a weak solution of certain boundary value 

problem with “free boundary”. 

2.  

Consider the operator (5.1) in  with 

 

By using the arguments in Example 5.6, show that in this case the solution of the variational inequality (5.8) 

can be considered as a weak solution of certain boundary value problem with “free boundary”. 
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3.  

Let  be a bounded domain, ,  and  a closed convex set. Define the operator 

 by 

 

Prove that then for all  there exists a unique solution of the variational inequality (5.8) and it depends 

on  continuously. 

4.  

Let  be a closed linear subspace of  ( ) and  a closed convex set. Define the 

operator  by 

 

Show that for all  there exists a unique solution of the variational inequality (5.8) and it depends on  

continuously. 
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Chapter 2.  FIRST ORDER 
EVOLUTION EQUATIONS 

 

1.  6 Formulation of the abstract problem 

In this section we shall motivate and formulate the abstract Cauchy problem for first order evolution equations 

and problems which will be considered for nonlinear parabolic equations with nonlinear elliptic operators of 

“divergence type”. 

In [67] the linear parabolic equation of the following form was considered: 
 

Equation 2.1. (6.1) 

 

where  is a bounded domain, , with the Dirichlet boundary condition 
 

Equation 2.2. (6.2) 

 

and the initial condition 
 

Equation 2.3. (6.3) 

 

Figure 2.1.  

 

Figure 2.1 

The “cylinder”  

Assume that  (i.e.  is a function which is once continuously differentiable with respect to  and 

twice continuously differentiable with respect to  in ) is a classical solution of (6.1) – (6.3). Multiplying the 

differential equation (6.1) with a test function  and integrating over , by Gauss theorem we 
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obtained an equation which (with (6.2)) defined the weak solution of problem (6.1)– (6.3). In this formulation 

the equation contained the initial condition (6.3), too. 

Now we shall give another definition of the weak solution for certain nonlinear parabolic equations and as a 

particular case for the linear equation (6.1). We shall consider nonlinear parabolic equations of the form 
 

Equation 2.4. (6.4) 

 

which is analogous to the nonlinear elliptic equation (1.4) of divergence form. 

In order to define the weak solution of (6.4), (6.2), (6.3) with homogeneous boundary condition, multiply the 

differential equation (6.4) with a test function  (i.e. by a  function with compact support), to obtain 
 

Equation 2.5. (6.5) 

 

 

Later we shall see that if the functions  satisfy certain growth conditions (which are analogous to ( )) then 

for a.a. fixed , 

 

 

Then (6.5) holds for all test functions . 

Introduce the notations 

 

and with a fixed  define operator  and operator  by 
 

Equation 2.6. (6.6) 

 

 

and define  for all fixed  by 
 

Equation 2.7. (6.7) 

 

Then for each fixed  
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and equation (6.5) can be written in the form of the “ordinary differential equation” 
 

Equation 2.8. (6.8) 

 

In order to give the exact definition of the equation (6.8), we have to define the derivative . Further, we 

have to give the exact definition of the initial condition , corresponding to (6.3). The homogeneous 

boundary condition (6.2) (i.e. the case ) will be taken into consideration by . 

First we define the function spaces which will be the domain of definition of operator . 

Definition 6.1. 

Let  be a Banach space, , . Denote by  the set of 

measurable functions  such that  is integrable and define the norm by 

 

Then  is a Banach space over  (identifying functions that are equal almost everywhere on ). If 

 is separable then  is separable, too. 

Denoting by  the dual space of  and by  the dualities in spaces , , we have for all , 

 with ,  Hölder’s inequality 

 

Further, for  the dual space of  is isomorphic and isometric to . Thus we may 

identify the dual space of  with . Consequently, if  is reflexive then  is 

reflexive for . The detailed proof of the above facts can be found, e.g., in [93]. The dualities between 

 and  will be denoted by . 

Definition 6.2. 

Let  be a real separable and reflexive Banach space and  a real separable Hilbert space 

with the scalar product  such that the imbedding  is continuous and  is dense in 

. Then the formula 

 

defines a linear continuous functional  over  and it generates a bijection between  and a 

subset of , i.e. we may write 

 

which will be called an evolution triple. 

Example 6.3. 

Let  be a bounded domain,  a nonnegative integer and . Let  be a closed 

linear subspace of the Sobolev space  and . Then  is an 

evolution triple. 

Now we define the generalized derivatives of functions . 
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Definition 6.4. 

Let  be an evolution triple, . If there exists  

such that 

 

for all  (i.e. for all infinitely many times differentiable functions on  with 

compact support) then  is called the generalized derivativeof  and it is denoted by . 

Remark 6.5. 

In the above equality  is considered as an element of . In this case we shall write 

briefly . It is easily seen that the generalized derivative is unique. 

Further, it is not difficult to show that  if and only if 

 

Theorem 6.6. 

Let  be an evolution triple, , , . Then 

 

with the norm 

 

is a Banach space.  is continuously imbedded into  (the space of 

continuous functions  with the supremum norm) in the following sense: to 

every  there is a uniquely defined  such that  

for a.e.  and 

 

Further, the following integration by parts formula holds for arbitrary functions 

 and : 
 

Equation 2.9. (6.9) 

 

(In (6.9)  mean the values of the above  in , respectively.) 

Remark 6.7. 

In the case  we obtain from (6.9) 

 

The detailed proof of Theorem 6.6 can be found in [30]. 
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2.  7 Cauchy problem with monotone operators 

In this section let  be an evolution triple, ,  and let us use the notations 

 

Let  be an operator given by 

 

where for a.a. fixed ,  maps  into , , . We want to find  

satisfying 
 

Equation 2.10. (7.1) 

 

By Theorem 6.6 the initial condition makes sense. 

Theorem 7.1. 

Let  be an evolution triple, , . Assume that for all fixed 

,  is monotone, hemicontinuous and bounded in the sense 
 

Equation 2.11. (7.2) 

 

for all ,  with a suitable constant  and a function . Further,  

is coercive in the sense: there exist a constant  and a function  such that 
 

Equation 2.12. (7.3) 

 

for all , . Finally, for arbitrary fixed , the function 
 

Equation 2.13. (7.4) 

 

Then for arbitrary  and  there exists a unique solution of problem 

(7.1) with the operator  defined by .  

In the proof we shall apply the following theorem of Carathéodory (see [93] and [19]). 

Theorem 7.2. 

Set ,  and assume that the functions 

,  satisfy the following conditions: 

 



 FIRST ORDER EVOLUTION 

EQUATIONS 
 

 53  
Created by XMLmind XSL-FO Converter. 

 

(“Carathéodory conditions”) and there exists a function  such that 

 

Then there exist absolute continuous functions  satisfying the initial value problem 

 

where . 

Proof of Theorem 7.1. 

The proof is based on Galerkin’s approximation. Since  is separable, there exists a countable 

set of linearly independent elements  such that their finite linear combinations are 

dense in . We shall find the -th approximation of a solution  in the form 

 

such that for a.e.  
 

Equation 2.14. (7.5) 

 

 

Equation 2.15. (7.6) 

 

System (7.5) is a system of ordinary differential equations for  because it has the form 
 

Equation 2.16. (7.7) 

 

and (7.6) is equivalent to 
 

Equation 2.17. (7.8) 

 

with some . The system (7.7) can be transformed to explicit form since the 

determinant , because  are linearly independent. 

According to assumption (7.4), the functions 

 

are measurable in  (with fixed ) and continuous in , because for all fixed 

,  is monotone, hemicontinuous, bounded by the assumptions of the 
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theorem, thus it is pseudomonotone and so it is demicontinuous (see Propositions 2.5, 2.7). 

From (7.2) it follows that  can be estimated locally by an integrable function . 

Consequently, by Theorem 7.2 (theorem of Carathéodory ), there exists a solution of (7.7) in a 

neighbourhood of . 

The coercivity assumption (7.3) implies that the solutions  and thus  can be extended to 

the whole interval . Indeed, if  satisfies (7.5) in a neighbourhood of , then 

multiplying (7.5) by  and summing with respect to , we obtain 
 

Equation 2.18. (7.9) 

 

Integrating (7.9) over an interval  ( ), by Remark 6.7 one obtains 
 

Equation 2.19. (7.10) 

 

 

hence by (7.3) 
 

Equation 2.20. (7.11) 

 

 

As the constant  is positive and , we get from (7.11) that there is a constant with 
 

Equation 2.21. (7.12) 

 

and thus 
 

Equation 2.22. (7.13) 

 

Consequently,  (defined in a neighbourhood of ) can be estimated by a constant, not 

depending on , therefore, the solutions  can be extended to . 

Further, by using the notations , , we obtain that 
 

Equation 2.23. (7.14) 
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hence  is bounded, too because by (7.2)  is a bounded operator. Since 

 and  are reflexive, there exist a subsequence of , again denoted by , and 

, ,  such that 
 

Equation 2.24. (7.15) 

 

 

Now we prove 

Lemma 7.3. 

Let  be an evolution triple, . Assume that  

satisfies (7.5),  weakly in ,  weakly in 

,  weakly in  and  weakly in . Then 
 

Equation 2.25. (7.16) 

 

Proof. 

Let  be an arbitrary function and  an arbitrary element. 

Since , there exist 
 

Equation 2.26. (7.17) 

 

Clearly, , , thus by (6.9), (7.5) 
 

Equation 2.27. (7.18) 

 

 

 

By the assumption of the lemma we obtain from (7.18) as  

 

 

Thus by (7.17) we get as  
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Equation 2.28. (7.19) 

 

 

In the case  (7.19) implies 

 

thus by Remark 6.5 there exists  and 
 

Equation 2.29. (7.20) 

 

Due to (6.9), (7.19), (7.20) for all  
 

Equation 2.30. (7.21) 

 

 

Hence with a function , ,  we obtain 

, and with , , . So by (7.20) we have 

proved Lemma 7.3. □ 

By (7.6) and Lemma 7.3 (7.5) implies (7.16). Further, we show 
 

Equation 2.31. (7.22) 

 

By (7.10) 

 

 

hence (7.6), (7.15), (7.16) imply 
 

Equation 2.32. (7.23) 

 

 

Since by (7.16) in the Hilbert space  
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we have 

 

whence (7.16), (7.23), Remark 6.7 imply 

 

 

thus by (7.15) 

 

i.e. we have (7.22). 

Finally, by (7.2)  is bounded and it is monotone since  is monotone for each 

fixed . Because of the hemicontinuity of ,  is hemicontinuous by (7.2) and 

Lebesgue’s dominated convergence theorem. Therefore, Proposition 2.5 implies that 

 is pseudomonotone (  is reflexive). Consequently, (7.15), (7.22) 

imply  which completes the proof of the existence. 

Uniqueness of the solution follows from the fact that  is monotone for all . 

Indeed, assuming that  are solutions of (7.1), we find for all  

 

 

whence 
 

Equation 2.33. (7.24) 

 

 

Since  is monotone for a.a. fixed , the second term on the left hand side of (7.24) is 

nonnegative, thus by (6.9) 

 

which implies  for each  because , thus . □ 

Remark 7.4. 

Assume that the conditions of Theorem 7.1 are satisfied such that  is uniformly monotone 

in the sense 
 

Equation 2.34. (7.25) 



 FIRST ORDER EVOLUTION 

EQUATIONS 
 

 58  
Created by XMLmind XSL-FO Converter. 

 

with some constant , for all . Then the solution of (7.1) depends on  and  

continuously: if  is a solution of (7.1) with ,  ( ) then for all 

 
 

Equation 2.35. (7.26) 

 

 

with some positive constant . Indeed, similarly to (7.24) we obtain 

 

 

whence, by using Young’s inequality with a sufficiently small  we obtain (7.26). 

Remark 7.5. 

Assume that there exists  such that the operator , defined by  is 

uniformly monotone, i.e. 

 

with some constant . Then the solution of (7.1) is unique and it depends continuously on 

 and . 

Indeed, multiplying the equation (7.1) by , we obtain that  satisfies 

 and 

 

Applying Remark 7.4 to the operator , defined by 

 

and to , we obtain the uniqueness of the solution of (7.1) and for , 

 ( ) an estimation of the form 

 

 

Remark 7.6. 

According to the proof of Theorem 7.1, a subsequence of the Galerkin solutions  

converges weakly in  to a solution  of (7.1). Since the solution of (7.1) is unique, 

the total sequence  is also weakly converging to . Further, similarly to the elliptic case, if 

(7.25) holds, i.e.  is uniformly monotone, then 

 



 FIRST ORDER EVOLUTION 

EQUATIONS 
 

 59  
Created by XMLmind XSL-FO Converter. 

Indeed, assuming that the original sequence does not converge weakly to , by using Cantor’s 

trick, we get a contradiction. Further, by (7.25) 

 

 

by (7.15) and (7.22) since  is pseudomonotone. 

3.  8 Application to nonlinear parabolic equations 

By using the results of Sections 3, one obtains the following applications of Section 7 to nonlinear parabolic 

equations. 

Let  be a closed linear subspace of  (containing ), ,  a bounded domain 

with “sufficiently smooth” boundary (see, e.g., [1]), . Then  is an evolution triple. We 

shall consider operators , defined by a formula which is analogous to (3.1). 

On functions  we assume 

( ) Functions  ( ) satisfy the Carathéodory conditions, i.e. for a.e. fixed 

 

 

and for each fixed  

 

( ) There exist a constant  and a function  ( ) such that for a.e. , 

all  

 

( ) For a.a. , all  

 

( ) There exist a constant ,  such that for a.e. , all  

 

In this particular case, when  is a closed linear subspace of , for a function  we shall 

denote  by  and instead of  we shall write . 

By using the same arguments as in Section 3, one proves 

Theorem 8.1. 

Assume ( ) – ( ). Then the operator , defined by 
 

Equation 2.36. (8.1) 
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satisfies the assumptions of Theorem 7.1. Thus for any ,  

there is a unique solution  of (7.1) with the operator (8.1). 

Proposition 3.3 implies the following sufficient condition for ( ). 

Proposition 8.2. 

Assume that functions  satisfy ( ), further, for a.a. , the functions 

 are continuously differentiable and the matrix 

 

is positive semidefinite. Then ( ) holds. 

Proposition 8.3. 

Assume that the assumptions of Proposition 8.2 are fulfilled such that for a.a. , 

each  
 

Equation 2.37. (8.2) 

 

with  and some positive constant . Then 

 

with some constant . Consequently, the operator , defined by (8.1) is uniformly 

monotone in the sense (7.25) and so the solution of (7.1) is unique and it depends 

continuously on  and  according to (7.26). Further, due to Remark 7.6 the sequence, 

constructed by the Galerkin method converges to the solution  with respect to the norm of 

. 

Example 8.4. 

A simple example satisfying all the above conditions is the equation 

 

(See Example 3.8.) 

In the case  (with bounded ) the conditions are satisfied also for the equation 

 

3.1.  Problems 

1.  

Assume that the functions 
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satisfy the Carathéodory conditions and for a.a.  

 

 

with some positive constants . Consider the operator 

 

 

where  is a closed linear subspace of , . 

Show that for arbitrary  and  there exists a unique solution of problem (7.1). 

2.  

Assume that the functions  are continuously differentiable and there exists a positive 

constant  such that 

 

By using Remark 7.5 and Proposition 3.4 , show that the solution of the above problem depends continuously 

on  and . 

3.  

Let  be measurable functions satisfying 

 

with some positive constants . Define operator  by 

 

 

 where  is a closed linear subspace, . 

By using Theorem 7.1 and Remark 7.5, show that there exists a unique solution of problem (7.1) and it 

depends continuously on  and . 

4.  

Assume that  is a (classical) solution of (6.1), (6.3) with the boundary condition 

 

where  for  and  satisfies . Define the function  by 

. 

Prove that then the function  satisfies 
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where , , the operator  is defined by (6.6) and  is defined by (6.7). 

If  satisfies the above conditions,  is called a weak solution of the above 

(classical) initial-boundary value problem. 

5.  

By using Theorem 8.1, show that if the functions  satisfy ( )–( ) then there is a weak solution 

 of the above problem with nonhomogeneous boundary condition. (See Problem 4.) 

6.  

Assume that the functions 

 

satisfy the Carathéodory conditions and for a.a.  

 

 

with some positive constants . Consider the operator 

 

 

 where  is a closed linear subspace,  and for ,  

by definition. 

Show that for arbitrary  and  there exists a unique solution of problem (7.1) 

with the above operator . 

7.  

Assume the the functions  are continuously differentiable and there exists a positive 

constant  such that 

 

By using Proposition 3.4 and Remark 7.5 show that the solution of the above problem depends continuously 

on  and . 

4.  9 Cauchy problem with pseudomonotone 
operators 

 

In the proof of Theorem 7.1 we did not use the monotonicity of  directly, it would be sufficient to assume 

instead of monotonicity and hemicontinuity that  is demicontinuous and 
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 is pseudomonotone. Moreover, it is sufficient to assume a weaker form of 

pseudomonotonicity, which will be satisfied for operators of the form (8.1) if the functions  satisfy conditions 

which are analogous to ( ), ( ), respectively. 

Definition 9.1. 

Let  be an evolution triple, . A bounded operator 

 is called pseudomonotone with respect to  if 
 

Equation 2.38. (9.1) 

 

 

Equation 2.39. (9.2) 

 

 

Equation 2.40. (9.3) 

 

imply 
 

Equation 2.41. (9.4) 

 

Theorem 9.2. 

Let  be an evolution triple, , . Assume that for a.a. fixed 

,  is demicontinuous and bounded such that for all , a.e. 

 
 

Equation 2.42. (9.5) 

 

with a suitable constant  and . Further,  is coercive such that for all 

, a.e.  
 

Equation 2.43. (9.6) 

 

with some constant ,  and for arbitrary fixed , the function 
 

Equation 2.44. (9.7) 
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Finally, the operator , defined by  is 

pseudomonotone with respect to . 

Then for any  and  there exists a solution  of (7.1). 

Proof. 

Theorem 9.2 follows by a slight modification of the proof of Theorem 7.1, because we only 

have to show property (9.2) for a subsequence of the sequence, constructed by Galerkin’s 

method. Clearly it will follow from the fact that the sequence  is bounded in 

. 

Multiply the equations (7.5) (defining  with the initial condition (7.6)) with arbitrary 

functions  and integrate over . Then we obtain for the sum of these 

equations 
 

Equation 2.45. (9.8) 

 

 

Equation 2.46. (9.9) 

 

The equation (9.8) implies 

 

 

where the constant is independent of  and . 

The functions  of the form (9.9) (for all  and arbitrary ) are dense in 

 because the linear combinations of  are dense in , thus 

 

holds for all  (with a constant, not depending on ). Thus we obtained that 

 is bounded with respect to the norm of , the dual space of , 

which completes the proof of Theorem 9.2. □ 

Now we shall formulate a generalization of Theorem 9.2. Let  be an evolution triple, , 

. Define operator  as follows: 
 

Equation 2.47. (9.10) 

 

One can show that  is a closed, linear, densely defined operator from  into , which is 

monotone by Remark 6.7 since 
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Further,  is “maximal monotone” , which means that there is no proper monotone extension of it. (For the 

proof see, e.g., [93].) 

Another example of a closed, linear, densely defined maximal monotone operator is (see, Theorem 13.2): 
 

Equation 2.48. (9.11) 

 

Definition 9.3. 

Let  be an evolution triple, , . Denote by  a closed, 

linear, densely defined, maximal monotone operator from  into . A 

bounded operator  is called pseudomonotone with respect to 

 if 

 

 

imply 

 

Theorem 9.4. 

Let  be an evolution triple, , . Denote by  a closed, 

linear, densely defined, maximal monotone operator from  into . 

Assume that  is bounded, demicontinuous, pseudomonotone 

with respect to  and coercive. 

Then for all  there exists a solution  of 

 

For the proof see, e.g., [8]. 

It is important that in Theorem 9.4  is not assumed to have the form 
 

Equation 2.49. (9.12) 

 

i.e.  may depend not only on , thus the above theorem can be applied to “functional parabolic 

equations”. (See some examples in Section10.) 

Remark 9.5. 

Applying Theorem 9.4 with operator , defined by (9.11) and operator , defined by (9.12), 

one obtains existence of -periodic solutions, see Section 13. 

Now consider the particular case when  and  is defined by (9.10). We generalize the existence 

theorem to the case of nonhomogeneous initial condition. 

Theorem 9.6. 
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Let  be an evolution triple, ,  and let  be defined by 

(9.10). Assume that  is bounded, demicontinuous, 

pseudomonotone with respect to  and coercive such that for arbitrary constant 

 

 

Then for all ,  there exists a solution  of 
 

Equation 2.50. (9.13) 

 

Proof. 

If , one can reduce problem (9.13) to the case  as follows. By using the 

notations , , , problem (9.13) is equivalent to the problem 
 

Equation 2.51. (9.14) 

 

Clearly, the operator  is demicontinuous, bounded and pseudomonotone with 

respect to . Further, it is coercive because 

 

 

 

if  since then . Thus for any  there is a 

solution  of (9.13) by Theorem 9.4. 

Now let  arbitrary element. Since  is dense in , there is a sequence of , 

converging to  in . According to the first part of the proof, there is a solution 

 of 

 

By using the arguments of the proof of Theorem 7.1, we obtain that there is a subsequence of 

 which converges weakly in  to a solution of (9.13). □ 

5.  10 Parabolic equations and functional equations 

5.1.  Parabolic differential equations 

Here we shall apply the results of Section 9 to the case when  is a closed linear subspace of , 

,  is a bounded domain (with sufficiently smooth boundary), . First we shall 

consider operators  of the form (8.1), but instead of ( ), with weaker assumptions, which are analogous to 
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assumptions ( ), ( ), respectively, considered in the nonlinear elliptic case. It will be proved that  is 

pseudomonotone with respect to , by using the following compact imbedding theorem. 

Theorem 10.1. 

Let  be an evolution triple,  a Banach space satisfying 
 

Equation 2.52. (10.1) 

 

Then for any , the imbedding 

 

is compact. 

In the proof of Theorem 10.1 we shall use 

Lemma 10.2. 

Assume (10.1). Then for arbitrary  there exists a constant  such that for all  
 

Equation 2.53. (10.2) 

 

Proof. 

Assume that (10.2) does not hold, then there exists  and sequences , , 

satisfying 
 

Equation 2.54. (10.3) 

 

Then for  we have 
 

Equation 2.55. (10.4) 

 

because the imbedding  is continuous. Thus (10.3), (10.4) imply 
 

Equation 2.56. (10.5) 

 

Further, since  and the imbedding  is compact, there is a subsequence  

of  which is convergent in . Due to (10.5) the limit in  must be , i.e. 
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which is impossible because of (10.4). □ 

Proof of Theorem 10.1. 

Let  be a bounded sequence in . We have to show that a subsequence is 

convergent in . First observe that as  is a reflexive Banach space (

,  are reflexive thus ,  are reflexive), thus there are 

 and a subsequence of , again denoted by  such that 
 

Equation 2.57. (10.6) 

 

 

To prove our theorem, we have to show that 
 

Equation 2.58. (10.7) 

 

Introduce the notation , due to (10.6) we have 
 

Equation 2.59. (10.8) 

 

with some constant . We prove that 
 

Equation 2.60. (10.9) 

 

By Lemma 10.2 for arbitrary  there exists  such that 

 

which implies 
 

Equation 2.61. (10.10) 

 

 

Since (10.10) holds for arbitrary , we shall obtain (10.9) by showing 
 

Equation 2.62. (10.11) 

 

The convergence (10.11) will follow from Lebesgue’s dominated convergence theorem, if we 

show that for almost all , 
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Equation 2.63. (10.12) 

 

Indeed, for a.a. ,  

 

since  is bounded in  and by Theorem 6.6  is continuously 

imbedded into , hence into , too. 

Now we prove (10.12). For simplicity, consider the case , the general case can be treated 

similarly. Define functions  by 
 

Equation 2.64. (10.13) 

 

where the constant  will be chosen later. By the definition (10.13) , and 

as  is bounded in , we obtain inequalities 
 

Equation 2.65. (10.14) 

 

with some constants , not depending on . Let  be a function with the 

properties , . Then 
 

Equation 2.66. (10.15) 

 

whence by (10.14) 
 

Equation 2.67. (10.16) 

 

 

The number  can be chosen such that the first term in the right hand side of (10.16) 

is arbitrary small for all . Therefore, we shall obtain (10.12) for  if we show that 
 

Equation 2.68. (10.17) 

 

According to (10.8)  weakly in , thus  and so  

weakly in  for arbitrary fixed . Consequently, by the definition (10.15) of 

, 
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Equation 2.69. (10.18) 

 

Since the imbedding  is compact, (10.18) implies (10.17) which completes the proof 

of Theorem 10.1. □ 

Now instead of ( ) we formulate a weaker assumption on functions , defining operators  and  in (8.1) 

which will imply with ( ), ( ), ( ) that  satisfies assumptions of Theorem 9.2. 

As in Section 8, let  be a closed linear subspace of , ,  a bounded domain (with 

sufficiently smooth boundary), . Instead of ( ) we assume on functions  

( ) There exists a constant  such that for a.e. , all ,  

 

Remark 10.3. 

Assumption ( ) is analogous to ( ) in Section 4. 

Theorem 10.4. 

Assume that  is a bounded domain ,  is sufficiently smooth and ( ), ( ), ( ), (

) hold. Then operator  of the form (8.1) satisfies all the conditions of Theorem 9.2. 

Proof. 

All the conditions easily follow from the above conditions (see Theorem 8.1), we only have to 

show that  is pseudomonotone with respect to . Assume that 
 

Equation 2.70. (10.19) 

 

 

 

Equation 2.71. (10.20) 

 

Since  is compactly imbedded into  (for bounded  with sufficiently smooth 

boundary, see Theorem 4.1), by Theorem 10.1 there is a subsequence of , again denoted by 

, for simplicity, such that 
 

Equation 2.72. (10.21) 

 

The remaining part of the proof is similar to that of Theorem 4.6. Since  is bounded in 

, we may assume (on the subsequence) that 
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Equation 2.73. (10.22) 

 

Further, 
 

Equation 2.74. (10.23) 

 

 

 

The first term on the right-hand side of (10.23) tends to  by (10.21) and Hölder’s inequality, 

because the multipliers of  are bounded in  (by ( )). Further, the third term 

on the right-hand side converges to , too, because (10.21), ( ), ( ) and Vitali’s 

convergence theorem imply that 

 

Consequently, (10.20), (10.23) imply 
 

Equation 2.75. (10.24) 

 

From ( ), (10.24) we obtain 
 

Equation 2.76. (10.25) 

 

and (for a subsequence) 
 

Equation 2.77. (10.26) 

 

Therefore, by ( ), ( ), (10.25), (10.21), (10.26) and Vitali’s theorem (Theorem 4.3) 

 

Thus by Hölder’s inequality 
 

Equation 2.78. (10.27) 
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Finally, from (10.21), (10.23), (10.25) and ( ) one gets 
 

Equation 2.79. (10.28) 

 

Since (10.27), (10.28) hold for a subsequence of , by using Cantor’s trick, we obtain 

(10.27), (10.28) for the original sequence. □ 

Remark 10.5. 

According to the proof of the above theorem, operator  belongs to the class  and it is 

demicontinuous. 

Now we formulate assumptions ( ), ( ), which are analogous to ( ), ( ) in Section 4 which will also 

imply with ( ), ( ) that the conditions of Theorem 9.2 hold. 

( ) For a.e. , all , ,  we have 

 

( ) There exist a constant  and a function  such that for a.e. , all 

 ( , ) 

 

Theorem 10.6. 

Assume ( ), ( ), ( ), ( ). Then the operator , defined by (8.1) satisfies the 

conditions of Theorem 9.2. Thus, for any ,  there is a 

solution of (7.1) with the operator (8.1). 

In the case when , instead of ( ) it is sufficient to assume ( ), because then (

) implies coercivity. (See Remarks 3.9, 4.11.) 

Proof. 

As in Section 3, one proves that ( ), ( ) imply (9.5), (9.7) and ( ) implies (9.6). Further, 

by Theorem 4.9, the operator  (defined in (8.1)) is pseudomonotone for a.a. 

 (since ( ), ( ) imply: ( ), ( ) hold for a.a. fixed ). Thus, for a.a. 

, the bounded operator  is demicontinuous (see Proposition 2.7). 

Finally, we have to prove that  (defined by (8.1)) is 

pesudomonotone with respect to . The proof of this fact is similar to that of 

Theorem 4.9 (elliptic case) and we use only ( ) instead of ( ). 

According to Definition 9.1, assume (9.1) – (9.3), i.e. 
 

Equation 2.80. (10.29) 
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Equation 2.81. (10.30) 

 

 

Equation 2.82. (10.31) 

 

We have to show (9.4), i.e. 
 

Equation 2.83. (10.32) 

 

Since  is bounded and  is sufficiently smooth, by Theorem 4.1  is compactly 

imbedded into  and thus by Theorem 10.1 the imbedding 

 

is compact. Hence, by (10.29), (10.30) there is a subsequence of , again denoted by  

(for simplicity) with the properties 
 

Equation 2.84. (10.33) 

 

Then the proof of (10.32) is almost the same as that of (4.20) in the proof of Theorem 4.9. 

Introduce the notation 

 

 

which is similar to the formula (4.23) of . Then 

 

and by (10.29), (10.30) we have 

 

By using the arguments of the proof of Theorem 4.9, we find 
 

Equation 2.85. (10.34) 

 

 

Equation 2.86. (10.35) 
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The equality (10.34) directly implies the first part of (10.32). Further, (10.35), (10.33) and (

) imply (as in the proof of Theorem 4.9) 
 

Equation 2.87. (10.36) 

 

Finally, by using (10.33), (10.36), ( ), ( ) and Vitali’s theorem (Theorem 4.3) we obtain 

the second part of (10.32) which completes the proof of Theorem 10.6. □ 

Remark 10.7. 

One can formulate and prove a generalization of Theorem 10.6 to the case when  is a  

order nonlinear elliptic operator which is analogous to (4.37). (See Remark 4.12.) 

5.2.  Functional parabolic equations 

   

Now we shall show some applications of Theorem 9.4 which is a generalization of Theorem 9.2. In Theorem 9.4

 is such that  is depending not only on , thus also “functional 

parabolic equations” (e.g. equations with delay) can be treated. The following theorem will be a generalization 

of Theorem 10.4 to functional parabolic equations with nonlinear and “non-local” third boundary conditions. 

Let  be a closed linear subspace ( ,  a bounded domain with sufficiently smooth 

boundary), . We shall consider operators of the following form. 

Definition 10.8. 

Define operator  by 
 

Equation 2.88. (10.37) 

 

 

 

Assume that the following conditions are fulfilled. 

( ) The functions  ( ) satisfy the Carathéodory conditions 

for arbitrary fixed  and  is measurable for each fixed 

. 

( ) There exist (nonlinear) operators  and  such that 

 

for a.e. , each ,  where 
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and the constants  satisfy , . 

( ) The inequality 

 

holds where the operator  satisfies 

 

and  is some positive constant. 

( ) The inequality 
 

Equation 2.89. (10.38) 

 

holds where  satisfies for all  
 

Equation 2.90. (10.39) 

 

Further, for all ,  
 

Equation 2.91. (10.40) 

 

(In the case  is considered to be identically .) 

( ) There exists  satisfying  such that if  weakly in  and strongly in 

,  in ,  in  then for a.a. ,  

 

for a subsequence and for a.a. ,  

 

for a suitable subsequence. 

Theorem 10.9. 

Assume ( ) – ( ). Then  is bounded, demicontinuous, 

pseudomonotone with respect to  and coercive in the sense of Theorem 9.6. 

Thus for any ,  there exists  satisfying 
 

Equation 2.92. (10.41) 
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Proof. 

Clearly, ( ), ( ) and (10.40) imply that  is bounded, because the trace operator 

 is bounded if  (see Remark 4.2) and so by Hölder’s 

inequality for all  

 

hence by (10.40) 
 

Equation 2.93. (10.42) 

 

 

Further, by using ( ), ( ), ( ), (10.40), Hölder’s inequality and Vitali’s theorem 

(Theorem 4.3) one obtains that  is demicontinuous. Assumptions ( ), ( ) imply that  is 

coercive in the sense of Theorem 9.6, because (for sufficiently large ) 

 

 

as  since . 

Now we show (similarly to the proof of Theorem 4.15) that  is pseudomonotone with respect 

to . Assume that 
 

Equation 2.94. (10.43) 

 

 

Equation 2.95. (10.44) 

 

 

Equation 2.96. (10.45) 

 

Since  is compactly imbedded into  (for bounded  with“sufficiently 

good” boundary, see Remark 4.2), by Theorem 10.1 there is a subsequence of , again 

denoted by , for simplicity, such that 
 

Equation 2.97. (10.46) 
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Further, since the trace operator  is continuous, the sequence of 

functions 
 

Equation 2.98. (10.47) 

 

 

Since  is bounded in , we may assume (on the subsequence) that 
 

Equation 2.99. (10.48) 

 

Further, 
 

Equation 2.100. (10.49) 

 

 

 

The first term on the right-hand side of (10.49) tends to  by (10.46) and Hölder’s inequality, 

because the multiplier of  is bounded in . Further, the third term on the right-

hand side converges to , too, by (10.48) because (10.43), (10.46), ( ), ( ), ( ) and 

Vitali’s theorem imply that 

 

The last term on the right-hand side of (10.49) tends to , too, by Hölder’s inequality, (10.47) 

and (10.40). 

Consequently, (10.45), (10.49) imply 
 

Equation 2.101. (10.50) 

 

Since  is bounded in , from ( ), (10.50) we obtain 
 

Equation 2.102. (10.51) 
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and (for a subsequence) 
 

Equation 2.103. (10.52) 

 

Therefore, by ( ), ( ), ( ), (10.40), (10.43), (10.46), (10.52) and Vitali’s theorem 

(Theorem 4.3) 

 

 

Thus by Hölder’s inequality and Vitali’s theorem 
 

Equation 2.104. (10.53) 

 

Finally, from (10.46), (10.49), (10.51) and ( ) one gets 
 

Equation 2.105. (10.54) 

 

Since (10.53), (10.54) hold for a subsequence of , by Cantor’s trick we obtain (10.53), 

(10.54) for the original sequence. 

So we have proved that  is bounded, demicontinuous, pseudomonotone with respect to 

 and coercive, thus Theorem 9.6 implies Theorem 10.9. □ 

Remark 10.10. 

According to the proof of Theorem 10.9, ( ) – ( ) imply that  belongs to the class  

with respect to , i.e. 

 

 

(See (10.51).) 

Remark 10.11. 

In the case of “non-local” operator  one may consider the following modified problem 

(instead of (10.41)) which is a generalization of the standard Cauchy problem for functional 

differential equations (delay equations) in one variable: 
 

Equation 2.106. (10.55) 

 

 

Equation 2.107. (10.56) 
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where  is defined by 
 

Equation 2.108. (10.57) 

 

Here ,  are given functions and we want to find a function 

 such that  and  satisfies (10.55), (10.56). The operator 

 

is defined by 
 

Equation 2.109. (10.58) 

 

 

where  and the functions 

 

satisfy conditions which are analogous to ( ) – ( ), with  instead of 

 and  instead of . 

Problem (10.55), (10.56) can be reduced to problem of the form (10.41), in the case when 

 satisfies . Indeed, assume that  

satisfies (10.55), (10.56) such that  and define  and  by 
 

Equation 2.110. (10.59) 

 

 

Equation 2.111. (10.60) 

 

Further, define operator  by 
 

Equation 2.112. (10.61) 

 

where  is defined by (10.60). Since for  we have , 

function , defined by (10.59) satisfies 
 

Equation 2.113. (10.62) 
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Equation 2.114. (10.63) 

 

Conversely, if  satisfies (10.62), (10.63) then , defined by 

 

satisfies (10.55), (10.56) and , . 

Further, if the functions  in (10.58) satisfy the above mentioned conditions (which are 

analogous to ( ) – ( )), then the functions defining operator  by (10.61), satisfy ( ) – (

)). Consequently, by Theorem 10.9 we obtain existence of solutions of (10.62), (10.63) 

(since ) which implies the existence of solutions to (10.55), (10.56). 

Example 10.12. 

Now we formulate examples satisfying ( ) – ( )), i.e. assumptions of Theorem 10.9. Let  

have the form 

 

 

where  are Carathéodory functions and they satisfy 

 

with some positive constants  and , 

 

 

with some constants , , . 

Finally, 

 

are linear and continuous operators. Thus,  and  may have one of the 

forms 
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To prove that examples of the above type satisfy the conditions ( ) – ( )), we apply similar 

arguments as in Example 4.19. 

Clearly, assumptions ( ), ( ), ( ) hold. In order to show ( ), we only have to show that 

the second term in  satisfies the desired inequality. By Young’s inequality we 

obtain 

 

 

where 

 

Consequently, we obtain for this term ( ) with 

 

since by Hölder’s inequality we have for this term 

 

 

where 

 

Now we prove that ( ) is satisfied. Clearly, for our example we have in (10.38) 

 

 

Further, by Young’s inequality 

 

 

 

for any  (because ) where 

 

and  is a constant depending on . Choosing sufficiently small , we obtain ( ) with 

 

since 
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If the functions  are between two positive constants, then, it is not difficult to show that (

) – ( ) are fulfilled when 

 

are continuous linear operators (like ). So in this case ,  (and also 

) may have also the forms 

 

where 

 

respectively, or 

 

5.3.  Problems 

1.  

Prove Remark 10.5. 

2.  

Prove Remark 10.10. 

3.  

Show that if the functions  satisfy ( ), ( ), ( ), ( ) and there is  such that  

then there is a weak solution  of the initial-boundary value problem with nonhomogeneous 

boundary condition, formulated in Problem 4 of Section 8 (where ). 

4.  

Let  where  and  is a bounded domain with sufficiently smooth 

boundary. Consider the operator  defined by 

 



 FIRST ORDER EVOLUTION 

EQUATIONS 
 

 83  
Created by XMLmind XSL-FO Converter. 

 

 

 where the functions  ( ) satisfy the Carathéodory conditions and there exist a 

constant  and  such that 

 

Further, 

 

(See the notations in Problem 5 in Section 4.) 

By using the arguments of the proof of Theorem 10.4, show that for arbitrary ,  

there exists a solution  of problem (7.1). 

6.  11 Existence of solutions for  

In this section we shall prove existence of solutions to nonlinear evolution equations in infinite time horizon. 

These results will be applied to nonlinear parabolic differential equations and functional parabolic equations 

which were considered in Sections 8 and 10. 

First we formulate some basic definitions. 

Definition 11.1. 

Let  be a Banach space, . The set  consists of all functions 

 for which the restriction  of  to  belongs to  for each 

finite . 

Further, by using the notations , , denote by  

and  the set of functions  and , respectively, for which 

,  for arbitrary finite . 

First we consider the case when  is “local”, i.e. it has the form 

 where for fixed ,  maps  into . 

Theorem 11.2. 

Let  be an evolution triple, . Assume that for almost all , 

 is such that operator , defined by 

 satisfies the assumptions of Theorems 7.1, 9.2, respectively for each 

fixed . 

Then for any  and  there exists  such that 

, 
 

Equation 2.115. (11.1) 
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In the case when the conditions of Theorem 7.1 are fulfilled (monotone case), the solution of 

(11.1) is unique. 

Proof. 

Let  be an increasing sequence of positive numbers with . Due to 

Theorems 7.1, 9.2, respectively, there exist  such that  

and 
 

Equation 2.116. (11.2) 

 

The coercivity assumptions (7.3), (9.6), respectively, imply that for all fixed  (and 

sufficiently large )  is bounded in . The (boundedness) assumptions (7.2), 

(9.5) imply that  is bounded in  for all fixed finite . 

Therefore, by using a “diagonal process”, one can select a subsequence of  (again denoted 

by , for simplicity) such that for each fixed ,  is weakly convergent in 

 and the sequence  is weakly convergent in  as . Thus 

we obtain a function  such that , , further, for 

each fixed  
 

Equation 2.117. (11.3) 

 

 

Equation 2.118. (11.4) 

 

Thus, similarly to the proof of (7.16) (see Lemma 7.3), one obtains  (by using

). Further, by (11.2) for  
 

Equation 2.119. (11.5) 

 

thus by Remark 6.7 and (11.4) 

 

 

 

 

hence 
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Since for fixed  is pseudomonotone with respect to  (as operator from 

 into ), 

 

and so from (11.4), (11.5) we obtain as  that (11.1) holds for a.a. . Since it 

holds for all  and , we obtain (11.1) for a.a. . 

In the case when the conditions of Theorem 7.1 are fulfilled (monotone case),  is unique for 

all  and thus the solution  of (11.1) is unique, too. (The restriction of a solution in  to 

 satisfies the initial value problem in .) □ 

Now we consider the case when operator  is “non-local”, i.e.  depends not only on . Then is is 

important to assume that  has the “Volterra property”. 

Definition 11.3. 

An operator  is of Volterra type (it has the Volterra 

property) if for each  and ,  depends only on , i.e. the 

restriction of  to . 

If  is of Volterra type, then the “restriction of  to ”, 

denoted by , is the operator , defined by 

 

 

Theorem 11.4. 

Let the operator  be an operator of Volterra type such 

that for each finite , the restriction of  to ,  

satisfies the assumptions of Theorem 9.6, i.e. it is bounded, demicontinuous, pseudomonotone 

with respect to  and it is coercive in the sense of Theorem 9.6. 

Then for arbitrary ,  there exists  such that 

 and 
 

Equation 2.120. (11.6) 

 

Proof. 

Similarly to the proof of Theorem 11.2, let  be an increasing sequence of positive numbers 

with . Due to Theorem 9.6 there exist functions  such that 

 and 

 

The Volterra property implies that  satisfies 
 

Equation 2.121. (11.7) 
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if . Coercivity of  implies that for all fixed finite  (and sufficiently large ), 

 is bounded in . From the boundedness of  it follows that  is 

bounded in . 

Therefore, by a “diagonal process”, one can select a subsequence of  (again denoted by 

) such that for each fixed , 

 

 

Thus we obtain a function  such that . By using the 

arguments of the proof of (7.16) (see Lemma 7.3), we obtain . Further, 
 

Equation 2.122. (11.8) 

 

 

Equation 2.123. (11.9) 

 

Since by (11.7) 
 

Equation 2.124. (11.10) 

 

by Remark 6.7 

 

 

 

 

hence 
 

Equation 2.125. (11.11) 

 

Since (for fixed )  is pseudomonotone with respect to 

, the inequality (11.11), (11.8), (11.9) imply that 
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Thus from (11.10) we obtain as  
 

Equation 2.126. (11.12) 

 

(11.12) holds for all , so we have (11.6). □ 

Now we apply Theorem 11.2 to operators of the form (8.1) where  is a closed linear subspace of , 

,  is a bounded domain with “sufficiently good” boundary, . 

Assume that 

( ) Functions  ( ) satisfy the Carathéodory conditions. 

( ) There exist a constant  and a function  ( ) such that for a.a. , 

all  

 

( ) For a.a. , all  

 

( ) There exist a constant ,  such that for a.e. , all  

 

>From Theorems 7.1, 11.2 directly follows 

Theorem 11.5. 

Assume ( ) – ( ). Then for all ,  there is a unique 

 such that  and 
 

Equation 2.127. (11.13) 

 

with the operator (8.1). 

Instead of ( ) assume 

( ) There exists a constant  such that for a.a. , all ,  

 

>From Theorems 10.4, 11.2 one obtains 

Theorem 11.6. 
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Assume ( ), ( ), ( ) ( ). Then for all ,  there is 

a solution  of (11.13) with the operator (8.1). 

If instead of ( ) we assume 

( ) For a.a. , all , ,  

 

we obtain from Theorems 10.6, 11.2 

Theorem 11.7. 

Assume ( ), ( ), ( ) ( ). Then for all ,  there is 

a solution  of (11.13) with the operator (8.1). 

Remark 11.8. 

If  and  is bounded then instead of ( ) it is sufficient to assume 

( ) For a.e. , all  

 

with some constant , . (See Remarks 3.9, 4.11.) 

Now we apply Theorem 11.4 to operators of the form (10.37) (see Definition 10.8) where  is a closed linear 

subspace of , ,  is a bounded domain (with sufficiently smooth boundary). 

Theorem 11.9. 

Assume that the functions 

 

have the Volterra property , i.e. for all ,  depends only on the restriction 

 of  to . Further, for all finite , the restrictions of  to 

 satisfy ( ) – ( ), i.e. assumptions of Theorem 10.9. 

Then for arbitrary ,  there exists a function  

such that  and (11.6) holds with the operator  of the form (10.37) with 

, i.e. when  is defined by 
 

Equation 2.128. (11.14) 

 

 

where , . 

6.1.  Problems 
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1.  

Prove Theorem 11.5. 

2.  

Prove Theorem 11.6. 

3.  

Prove Remark 11.8. 

4.  

Consider the functions 

 

which satisfy the conditions of Problem 1 in Section 8 for all , with the same constants. Prove that 

there exists a unique solution of problem (11.1) with the operator  defined by functions  in Problem 1 

of Section 8. 

5.  

Formulate and prove an existence and uniqueness theorem for the solution of (11.1) where the operator  

is defined in Problem 3 of Section 8. 

6.  

Formulate and prove an existence and uniqueness theorem for the solution of (11.1) where the operator  

is defined in Problem 6 of Section 8. 

7.  

Formulate and prove an existence theorem for the solution of (11.1) where the operator  is defined in 

Problem 4 of Section 10. 

7.  12 Qualitative properties of the solutions 

 

7.1.  Boundedness of solutions 

First we formulate and prove theorems on the boundedness of ,  for the solutions  of (11.1) 

and (11.6). 

Theorem 12.1. 

Assume that the operator  is given by 

 

and the assumptions of Theorem 11.2 are fulfilled such that for a.a. ,  
 

Equation 2.129. (12.1) 
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(i.e. the function  in (9.6) is essentially bounded) and  is bounded for a.e. 

, i.e. . 

Then for a solution  of (11.1),  is bounded for , so  and 
 

Equation 2.130. (12.2) 

 

with some constant  (not depending on ). 

Proof. 

Let  be a solution of (11.1) and . Then by (11.1), (12.1) and Young’s 

inequality for arbitrary  

 

hence 
 

Equation 2.131. (12.3) 

 

 

Since by Remark 6.7 

 

choosing sufficiently small  and integrating (12.3) with respect to  over , we 

obtain 
 

Equation 2.132. (12.4) 

 

 

Since the imbedding  is continuous, 

 

thus (12.4) implies 
 

Equation 2.133. (12.5) 

 

with some positive constant . 
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We show that the inequality (12.5) implies that  is bounded for . Indeed, 

assuming that the (continuous) function  is not bounded, for any  there are  and 

 such that 

 

Since  is continuous, there is  such that 

 

hence by (12.5) 

 

which is impossible for all , because  and . Finally, from 

(12.4) and the boundedness of  we obtain (12.2). □ 

Theorem 12.2. 

Assume that the conditions of Theorem 11.4 are fulfilled such that for a.a. , 

 with  

 

holds where ,  are constants,  is a function with the property 

. Further,  is bounded for a.a. . 

Then for a solution  of (11.6) (with arbitrary initial condition),  is bounded for 

 and (12.2) holds. 

Proof. 

Similarly to the proof of Theorem 12.1, we have for a solution of (11.6) 

 

 

Choosing sufficiently small  and integrating over , by Remark 6.7 we obtain 
 

Equation 2.134. (12.6) 

 

 

with some constant . Since , we obtain from (12.6) 
 

Equation 2.135. (12.7) 
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with some positive constant . We show that (12.7) implies the boundedness of . 

Assume that  is not bounded. Then for any  there are  and  such 

that 

 

As  is continuous, there is a  such that 

 

Hence by (12.7) 

 

 

which is impossible for all  because ,  and . 

From the boundedness of  and (12.6) we obtain (12.2). □ 

Now consider the case when  is a closed linear subspace of , , . Similarly to the 

proof of Theorem 12.2, one proves 

Theorem 12.3. 

Assume that the conditions of Theorem 11.9 are fulfilled such that for all for a.a. , 

 with  the inequalities 
 

Equation 2.136. (12.8) 

 

 

Equation 2.137. (12.9) 

 

 

hold with some constants, , ,  and  is 

bounded for a.e. . 

Then for a solution  of (11.6) with operator  given by 
 

Equation 2.138. (12.10) 
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 is bounded for  and (12.2) holds. 

7.2.  Stabilization of the solutions 

Now we shall formulate conditions which imply results on the stabilization of solutions  to (11.6) as . 

First consider operators defined by 
 

Equation 2.139. (12.11) 

 

is defined for all . 

Theorem 12.4. 

Assume that the operator  satisfies the conditions of Theorem 7.1 for all  

such that for any  
 

Equation 2.140. (12.12) 

 

with some constants . (In this case  is uniformly monotone, see Definition 

2.15.) Further, there exist  and , a continuous function  with the 

property  and for all  there is a positive number  such that for all  

with ,  we have 
 

Equation 2.141. (12.13) 

 

Then for a solution  of (11.1) with operator  of the form (12.11) we have 
 

Equation 2.142. (12.14) 

 

for arbitrary fixed  where  is the unique solution to 
 

Equation 2.143. (12.15) 

 

If 
 

Equation 2.144. (12.16) 
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is satisfied, too, then we have 
 

Equation 2.145. (12.17) 

 

Further, if , 
 

Equation 2.146. (12.18) 

 

 

holds with some constant . 

Proof. 

By (7.2), (12.12), (12.13) the operator  is bounded, strictly monotone and 

coercive, too, according to Remark 3.7. Further, it is easy to show that by (12.13)  is 

hemicontinuous, because  is hemicontinuous and in (12.13)  is not depending on . 

Therefore, Theorem 2.14 implies that (12.15) has a unique solution  for all . 

Further, by Theorem 11.2 there exists a unique solution  of (11.1) in . Then by (12.15) 

one obtains 
 

Equation 2.147. (12.19) 

 

 

The second term on the left-hand side of (12.19) can be estimated as follows: 
 

Equation 2.148. (12.20) 

 

 

 

 

Further, for the right-hand side of (12.19) we have 
 

Equation 2.149. (12.21) 
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Thus, choosing sufficiently small , integrating (12.19) over , we obtain by 

Remark 6.7, (12.13), (12.20), (12.21) 
 

Equation 2.150. (12.22) 

 

 

 

 

Hence, by using the notation , we obtain with some  
 

Equation 2.151. (12.23) 

 

Since  is bounded and the last term on the left-hand side of (12.23) is nonnegative, we 

obtain form (12.23), as from (12.5), that  is bounded for . 

Further, since , (12.23) implies that 
 

Equation 2.152. (12.24) 

 

First we show that 
 

Equation 2.153. (12.25) 

 

Assuming that (12.25) is not valid, there exist  and  such that 

 

Further, since , for arbitrary  there exists  such that 

 

Choosing sufficiently large , by using the boundedness of , we obtain from (12.23) 
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with some constant , which is impossible if  is sufficiently small and  is sufficiently 

large. Thus we have (12.25). 

Assume that (12.24) is not true. Then there exist  and 

 

such that 

 

Since  is continuous, there is  with 

 

Applying (12.23) to ,  with sufficiently small , we obtain from 

(12.23) 

 

and since , we have 

 

which is impossible because . 

So we have proved (12.24), i.e. the first part of (12.14). The second part of (12.14) follows 

from (12.23) with , . If (12.16) is satisfied, too, then we obtain from 

(12.22), as , the first part of (12.17) and in the case when , we find the 

second part of (12.17). 

Finally, we obtain from (12.23) as  

 

Hence, by using the notation , we get 

 

This linear differential inequality implies (12.18) which completes the proof of Theorem 12.4. 

□ 

It is easy to formulate conditions which imply that the operator , defined by (8.1), satisfies the assumptions 

of Theorem 12.4 in the case when  is a closed linear subspace of . So by Theorem 12.4 we find 

Theorem 12.5. 

Assume that the operator  satisfies the conditions of Theorem 8.1 such that 

with some constants ,  
 

Equation 2.154. (12.26) 
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Further, there exist a continuous function  and Carathéodory functions 

 

such that for a.a. , all ,  

 

and there exists  such that 

 

Then for a solution  of (11.1) we have (12.14) where  is the unique solution of 

(12.15) with operator , defined by 
 

Equation 2.155. (12.27) 

 

Further, (12.16) implies the first part of (12.17), if , we have the second part of (12.17) 

and the estimate (12.18). 

Now we formulate and prove a stabilization result on the (“non-local”) solution of (11.6), considered in 

Theorem 11.4. 

Theorem 12.6. 

Assume that the (“non-local”) operator  has the form 

 where the operator 

 

is such that for each fixed ,  depends only on  and this 

operator, mapping  into , satisfies the assumptions of Theorem 7.1 for a.a. . Further, 

for all , a.a.  
 

Equation 2.156. (12.28) 

 

 

with some constants , . 

Finally, there exist  and , a continuous function  and for all  

there is a positive constant  such that for all  with , 

, a.a.  we have 
 

Equation 2.157. (12.29) 

 

 

Equation 2.158. (12.30) 
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where . 

Then for a solution of (11.6) we have the conclusions of Theorem 12.4, i.e. we have (12.14) 

and if (12.16) holds then we have (12.17), (12.18). 

Proof. 

Similarly to the proof of Theorem 12.4, one obtains that  is bounded, strictly 

monotone, coercive and hemicontinuous. Thus the equation (12.15) has a unique solution  

for each . Further, by Theorem 11.4 there exists a unique solution  of (11.6). Thus 

one obtains 
 

Equation 2.159. (12.31) 

 

 

The second term on the left hand side of (12.31) can be estimated as follows: 
 

Equation 2.160. (12.32) 

 

 

 

 

For the right hand side of (12.31) we have (12.21). 

Thus, choosing sufficiently small , integrating (12.31) over , we obtain by 

Remark 6.7, (12.21), (12.29), (12.30), (12.32) 
 

Equation 2.161. (12.33) 

 

 

Inequality (12.33) is the same as (12.22), so we can finish the proof of Theorem 12.6 as in the 

proof of Theorem 12.4. □ 

It is easy to formulate assumptions on functions 

 

which imply that the operator  of the form (11.14) satisfies the conditions of Theorem 12.6 with 
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Theorem 12.7. 

Let  be a closed linear subspace of , ,  and assume that the 

operator  of the form (11.14) satisfies the conditions of Theorem 11.9 such that for all 

, a.a. , all  

 

 

where  is a nonnegative constant. Further, there exist a continuous function  and 

Carathéodory functions 

 

such that for a.a. , all  

 

where  and there exists  such that 

 

Then for a solution  of (11.6) we have the conclusion of Theorem 12.4, i.e. (12.14) and 

(12.17), (12.18), respectively, where the operator  is defined by (12.27). 

Now we consider Examples 10.12 and we formulate additional conditions which imply that assumptions of 

theorems in Sections 11 and 12 are fulfilled. 

According to Example 10.12 let 

 

 

 

where  are Carathéodory functions, defined for a.a.  satisfying 

 

with some constants , , 

 

 

Further, let  be operators of Volterra type such that for all , 

 

are linear continuous operators (of Volterra type). 

Then clearly, the assumptions of Theorem 11.9 on existence are fulfilled and in the case when  are 

positive constants, the conditions of Theorem 11.5 are satisfied. If  are between two positive constants, the 

operators  may be linear continuous operators, mapping 
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For examples of operators of the above types, see in Example 10.12. 

The conditions of Theorem 12.1 on the boundedness of  are fulfilled in the (“local”) case when 

 are positive constants, because by Young’s inequality and  

 

hence with sufficiently small  we obtain (12.1). 

The conditions of Theorem 12.3 (on the boundedness of ) are fulfilled in the “non-local” case for 

the above example if  are linear operators of Volterra type, mapping continuously  into  for 

all . Further,  is a linear operator of Volterra type, mapping  continuously into  for all 

. (If  are between two positive constants,  may map  continuously into  for all 

). 

Because then 

 

 

and similarly can be estimated . 

Further, by using the estimates in Example 10.12, we obtain by Young’s inequality 

 

 

 

 

where 

 

and 

 

Thus, choosing sufficiently small , we have (12.9) with 

 

 

because . 
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Finally, we formulate conditions which imply that our example satisfies the assumptions of Theorems 12.5 and 

12.7, respectively (on stabilization of  as ). In the “local” case, when  are positive constants, 

assume that  has the form 

 

where  and  is a monotone nondecreasing function, satisfying 

 

In this case (12.26) is satisfied with . If 

 

then we have (12.26) with some . In this case the conclusions of Theorem 12.5 hold, assuming also 

 

with some . 

In the “non-local” case assume that 

 

where  are positive constants and the Carathéodory functions satisfy for a.a. , all  

 

Further, 

 

 

where  is a monotone nondecreasing function, satisfying 

 

In this case (12.26) holds with . 

If 

 

then we have (12.26) with some . The conclusions of Theorem 12.7 hold (with ), assuming also 

 

7.3.  Problems 

1.  

Let  be a solution of problem (11.1) with the operator  in Problem 4 of Section 11 and 

assume that  is bounded for a.a. . Prove that  is bounded for  and 

(12.2) holds. 

2.  

Let  be a solution of problem (11.1) with the operator ,  in Problem 3 of 

Section 8 (see also Problem 5 in Section 11) satisfying the conditions 
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with some positive constants . Assume that . Prove that  is bounded for 

 and (12.2) holds. 

3.  

Let  be a solution of problem (11.1) with the operator ,  in Problem 6 of 

Section 8 (see also Problem 6 in Section 11). Assuming , prove that  is bounded 

for  and (12.2) holds. 

4.  

Assume that the operator , defined in Problem 4 of Section 10 satisfies the conditions in that Problem for 

all . Prove that if  is a solution of problem (11.1) with the above operator  and 

 then  is bounded for  and (12.2) holds. 

5.  

Assume that  is a solution of problem (11.1) with the operator ,  considered 

in Problem 3 of Section 8 (for ) and in Problem 2 for . Further, assume that there exist 

functions  such that 

 

Further, there exists  such that 

 

Prove that then 

 

for arbitrary fixed  where  is the unique solution to 

 

 

6.  

Formulate and prove a theorem on the stabilization of the solution of (11.1) (as ) with the operator  

defined by 

 

,  is a closed linear subspace of , if there exists  such that 

 

8.  13 Periodic solutions 

In this section we shall formulate conditions which imply the existence of -periodic solutions of evolution 

equations in . In the proofs we shall apply the following maximal monotone operator. (See (9.11), Remark 

9.5.) 
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Definition 13.1. 

Let  be an evolution triple and define operator  by 
 

Equation 2.162. (13.1) 

 

Theorem 13.2. 

The operator (13.1) is a closed, linear, densely defined, maximal monotone mapping from 

 into . The maximal monotonicity of  means that it is monotone and 

it has no proper monotone extension. 

Proof. 

It is not difficult to show that  is a closed, linear, densely defined operator, mapping from 

 into . Further, the operator  is monotone because by Remark 6.7 for 

arbitrary  

 

Further, assume that for some ,  
 

Equation 2.163. (13.2) 

 

We have to show that  and . Apply (13.2) to  where 

,  and  are arbitrary. Since 

 

we obtain from (13.2) 

 

 

This inequality may hold for arbitrary , only if 

 

which implies according to Remark 6.5 that 

 

Further, by using the formula in Remark 6.7, we obtain from (13.2) and  
 

Equation 2.164. (13.3) 
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The inequality (13.3) implies , i.e. . Indeed, assuming , one 

could find  such that the right hand side of (13.3) would be negative, since for 

arbitrary , the function 

 

belongs to . So we have shown that  is maximal monotone. □ 

Now consider evolution equations in  with “local” operators  which have the form 
 

Equation 2.165. (13.4) 

 

Theorem 13.3. 

Assume that for a.a. , the function  is -periodic (i.e.  for a.a. 

), and satisfies the conditions of Theorem 9.2, further,  is -periodic, 

too. 

Then there exists a -periodic function  which satisfies  

and 
 

Equation 2.166. (13.5) 

 

Proof. 

The assumptions of Theorem 13.3 imply that the operator 

 

, defined by 

 

is bounded, coercive and pseudomonotone with respect to , and, consequently, 

it is pseudomonotone with respect to  (defined by (13.1)). Further, we claim that it is 

demicontinuous. Indeed, for a.a. fixed ,  is demicontinuous, thus, if  

with respect to the norm of  then for a.a. ,  with respect to 

the norm of  (for a subsequence) which implies that for each fixed , a.a. 

 

 

(since  is demicontinuous), so Vitali’s theorem, Hölder’s inequality and the boundedness 

assumption (9.5) imply 

 

Thus by Theorems 9.4, 13.2 there exists a solution  of (13.5) in . Since 

, we have . Thus, defining  for  by 
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we obtain 

 

(  follows from  and formula (6.9).) Thus  satisfies (13.5) in 

. □ 

Applying Theorem 13.3 in the case when  is a closed linear subspace of , , , to 

operators of the form (8.1), we obtain directly 

Theorem 13.4. 

Assume that the functions  are -periodic, i.e. for a.a.  and 

all  

 

and their restrictions to  satisfy ( ), ( ), ( ) or ( ) and ( ). Further, 

 is -periodic, too. 

Then there exists a -periodic solution  of (13.5) where the operator 

 is defined by (8.1). 

In the case of “non-local” operators , instead of the abstract Cauchy problem we consider the following 

modified problem, which is a generalization of the Cauchy problem for functional differential equations in one 

variable (see Remark 10.11): 
 

Equation 2.167. (13.6) 

 

where  is defined by 
 

Equation 2.168. (13.7) 

 

,  are given functions and we want to find a function  

such that  and  satisfies (13.6). Further, 
 

Equation 2.169. (13.8) 

 

is a given (nonlinear) operator. Observe that defining operator 

 

 

the differential equation in (13.6), i.e. 
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has the form (11.6) which was considered in Section 11. We assume that  is of Volterra type and  

depends only on . 

We shall formulate conditions on  and  which imply that for some  there exists a -

periodic solution of problem (13.6). 

Theorem 13.5. 

Assume that the operator 

 

and  are -periodic, i.e. for all  

 

and  is of Volterra type. Further, assume that the operator , 

defined by 
 

Equation 2.170. (13.9) 

 

 

Equation 2.171. (13.10) 

 

is bounded, demicontinuous, coercive and pseudomonotone with respect to 
 

Equation 2.172. (13.11) 

 

Then there exists  such that , 

 

Remark 13.6. 

Theorem 13.5 means that for all  there exists 

 

such that there exists a -periodic solution of the Cauchy problem (13.6). 

Proof of Theorem 13.5. 

Since by Theorem 13.2  is a maximal monotone, closed, densely defined linear 

operator with , given in (13.11) and  is bounded, 

demicontinuous, coercive and pseudomonotone with respect to , by Theorem 9.4 there is 

a solution  of 

 

Then for , defined by 
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we have ,  is -periodic,  and satisfies 

 

i.e. the statement of Theorem 13.5 holds for . □ 

Now we apply Theorem 13.5 in the particular case when  has the form analogous to the formula (10.37) and  

is a closed linear subspace of , . Similarly to the conditions ( ) – ( ) and the conditions 

of Theorem 11.9, assume 

( ) The functions 

 

satisfy the Carathéodory conditions for arbitrary fixed  ( ), and are -periodic: 

 

for a.e. , all , . 

( ) There exist bounded (nonlinear) operators  and  

such that 

 

for a.e. , each  and . 

( ) There holds the inequality 

 

where 

 

 is some positive constant and . 

( ) There holds the inequality 

 

where  satisfies for some positive  

 

( ) There exists  such that if  in , strongly in ,  in 

,  in , then for a.a. , , 

 

for a subsequence. 

Definition 13.7. 

Assuming ( ) – ( ), we define operator 
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Equation 2.173. (13.12) 

 

 

Theorem 13.8. 

Let  be a closed linear subspace of , , assume ( ) – ( ) and let 

 be -periodic. Then there exists  such that 

 and 

 

Proof. 

Let  where  is given by (13.12), then the operator 

 

given in (13.9), has the form 

 

 

 

where  is defined by (13.10). By Theorem 10.9 the assumptions ( ), ( ), ( ) imply 

that  is bounded, demicontinuous and coercive. Further, ( ) – ( ) imply that  is 

pseudomonotone with respect to , given by (13.11). This statement can be proved by 

using the arguments of the proof of Theorem 10.9. Thus Theorem 13.8 directly follows from 

Theorem 13.5. □ 

Now we formulate conditions which imply that the Examples 10.12 satisfy the conditions of Theorem 13.8. 

Example 13.9. 

Assume that the functions  are -periodic. Further, operators  have the 

form 

 

where 

 

are linear continuous operators. Then the conditions of Theorem 13.8 on  are fulfilled. 

8.1.  Problems 
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1.  

Show that for the Example 13.9 the assumptions of Theorem 13.8 are fulfilled. 

2.  

Consider the functions 

 

which satisfy the assumptions of Problem 1 in Section 8 for all  (see also Problem 4 in Section 11) 

and 

 

Further,  satisfies 

 

Prove that there exists a -periodic solution  of the equation (13.5) with the operator  

defined by functions  in Problem 1 of Section 8. 

3.  

Formulate and prove a theorem on the existence of a -periodic solution of the equation (13.5) where the 

operator  is defined in Problem 3 of Section 8. 

4.  

Formulate and prove a theorem on the existence of a -periodic solution of the equation (13.5) where the 

operator  is defined in Problem 6 of Section 8. 

5.  

Formulate and prove a theorem on the existence of a -periodic solution of the equation (13.5) where the 

operator  is defined in Problem 4 of Section 10. 
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Chapter 3.  SECOND ORDER 
EVOLUTION EQUATIONS 

 

In this chapter we shall consider certain nonlinear hyperbolic differential equations and functional equations 

which can be treated by means of monotone type operators. Namely, we shall consider equations of the form 

 

where  is a nonlinear operator of monotone type,  is a linear operator having some particular properties and 

 is a nonlinear operator with some compactness properties, finally, . 

1.  14 Existence of solutions in  

As before, let  be an evolution triple,  and let the operator  be defined by 

 

Assume that 

( )  is bounded, demicontinuous, pseudomonotone with respect to  and 

coercive such that 

 

with some constants . 

( )  is a linear continuous operator with the properties: 

 

and define  by 

 

( ) The operator 

 

is bounded, demicontinuous, it has the following compactness property: if  weakly in , 

 weakly in  and  weakly in  then for a subsequence 

 

 

Finally, 

 

where . 

Theorem 14.1. 
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Assume ( ) – ( ). Then for arbitrary  there exists 

 such that ,  and 
 

Equation 3.1. (14.1) 

 

 

Equation 3.2. (14.2) 

 
 

Proof. 

Define operator  by 

 

Clearly,  is a linear and continuous operator. If  is a solution of (14.1), (14.2) then  

satisfies ,  and 
 

Equation 3.3. (14.3) 

 

 

Equation 3.4. (14.4) 

 

Further, if  satisfies (14.3), (14.4) then  is a solution of (14.1), (14.2), 

since  is absolutely continuous and  for a.a. . Thus, due to 

Theorem 9.4, it is sufficient to show that the operator , 

defined by 

 

is bounded, demicontinuous, pseudomonotone with respect to  and it is coercive. 

Since the operator  is linear and continuous, from assumptions 

(i) - (iii) directly follows that  is bounded and 

demicontinuous. 

Now we show that  is pseudomonotone with respect to . Let  be a sequence in  

such that 
 

Equation 3.5. (14.5) 
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Equation 3.6. (14.6) 

 

By (ii) the linear operator  is monotone. Indeed, by using 

the notation , we have  and thus 
 

Equation 3.7. (14.7) 

 

so 
 

Equation 3.8. (14.8) 

 

 

To obtain formula (14.8) we choose a sequence of polynomials  such that 

 

Then 

 

 

and after integrating over  we obtain 

 

and so (14.8) follows as . 

Consequently, 

 

hence 

 

which implies 
 

Equation 3.9. (14.9) 

 

Set ,  then ,  and 
 

Equation 3.10. (14.10) 
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and by (14.5) 
 

Equation 3.11. (14.11) 

 

Thus by assumption ( ) for a subsequence (denoted in the same way) we obtain 
 

Equation 3.12. (14.12) 

 

 

Equation 3.13. (14.13) 

 

Now (14.6), (14.9), (14.13) imply 
 

Equation 3.14. (14.14) 

 

for a subsequence. By using Cantor’s trick one obtains that (14.14) holds for the original 

sequence, too. 

Since according to ( )  is pseudomonotone with respect to , by (14.5), (14.14) we 

have 
 

Equation 3.15. (14.15) 

 

 

Equation 3.16. (14.16) 

 

From (14.6), (14.13), (14.16) one gets 

 

for a subsequence and so by (14.9) 
 

Equation 3.17. (14.17) 

 

whence 
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Equation 3.18. (14.18) 

 

for a subsequence, thus by using Cantor’s trick we find (14.18) for the original sequence, too. 

Since  is linear, continuous and monotone, by Proposition 

2.5 it is pseudomonotone which implies by (14.17) 
 

Equation 3.19. (14.19) 

 

Therefore, (14.12), (14.15), (14.19) imply 

 

(for a subsequence), so by (14.18) we have shown that  is pseudomonotone with respect to 

. 

Finally, we prove that  is coercive. By assumption (i) and the monotonicity of  
 

Equation 3.20. (14.20) 

 

and for the last term we have 
 

Equation 3.21. (14.21) 

 

 

Equation 3.22. (14.22) 

 

 

According to assumption ( ), for arbitrary  there exists  such that 

 

Thus by the boundedness of  and (14.22) 
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with some constant  and a constant , depending on . Choosing sufficiently small 

, we obtain 

 

if  is sufficiently large, whence by (14.20), (14.21) we find 

 

if  is sufficiently large. Thus,  is coercive which completes the proof of Theorem 

14.1. □ 

Now assume that instead of ( ) the following (stronger) condition is fulfilled. 

( )  is bounded, demicontinuous, coercive (as in ( )) and is of  with 

respect to  (see, e.g. [8], [93]): if for  

 

 

(Then, clearly,  is pseudomonotone with respect to .) 

In this case we may assume a weaker condition on : 

( ) The operator  is bounded, demicontinuous. Further, 

 

 

then for a subsequence 

 

Finally, 
 

Equation 3.23. (14.23) 

 

Theorem 14.2. 

Assume ( ), ( ), ( ). Then for arbitrary  there exists  

such that ,  and (14.1), (14.2) hold. 

The proof of this Theorem follows from the proof of Theorem 14.1. 

Remark 14.3. 
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One can prove the following generalization of Theorem 14.1 to problems with 

nonhomogeneous initial conditions. Assume ( ) - ( ) or ( ), ( ), ( ) such that the 

coercivity of  holds in the sense of Theorem 9.6. Then for arbitrary , 

,  there exists  such that , , 

,  satisfies (14.1) and 
 

Equation 3.24. (14.24) 

 

Indeed, if  is a solution of (14.1), (14.24) then ,  and  

satisfies 
 

Equation 3.25. (14.25) 

 

 

Equation 3.26. (14.26) 

 

Conversely, if  satisfies (14.25), (14.26) then  satisfies (14.1), 

(14.24), . 

It is not difficult to show that if  satisfies ( ) or ( ) then the operator 

 

also satisfies (iii) or (iii’). Consequently, by Theorems 9.5, 14.1, 14.2 there is a solution of 

(14.25), (14.26) and so there is a solution of (14.1), (14.24). 

Remark 14.4. 

Assume that ( ) is satisfied such that  is uniformly monotone in the sense 
 

Equation 3.27. (14.27) 

 

 

with some positive constants , further, . Then the solution of (14.1), (14.24) is 

unique and it depends continuously on . 

Indeed, then for solutions  of (14.25), (14.26) with , ,  ( ) we 

have 
 

Equation 3.28. (14.28) 

 



 SECOND ORDER EVOLUTION 

EQUATIONS 
 

 117  
Created by XMLmind XSL-FO Converter. 

 

 

 

Since by Remark 6.7 

 

we obtain from (14.27), (14.28) by Young’s inequality for the solutions  

 

 

with some positive constants . 

Applying Theorems 10.1, 10.9, one easily gets from Theorem 14.1 and Remark 14.3 

Theorem 14.5. 

Let  be a closed linear subspace of , ( ,  a bounded domain with 

sufficiently smooth boundary), . Assume that  has 

the form (10.37) and ( ) – ( ) are fulfilled such that  and  are not depending on 

. Further, operator  has the form 
 

Equation 3.29. (14.29) 

 

 

where , , ,  for a.a. , all , 

 

 

Equation 3.30. (14.30) 

 

Finally, there is  with  such that 
 

Equation 3.31. (14.31) 
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is bounded, demicontinuous, 
 

Equation 3.32. (14.32) 

 

with some constant . 

Then there exists a solution of (14.1), (14.24). 

Proof. 

By Theorem 10.9, and Remark 10.10  satisfies ( ). Clearly,  satisfies ( ). Finally, we 

show that  satisfies ( ). By (14.31) 

 

is bounded and demicontinuous. Further, if 

 

 

then by Theorem 10.1 for a subsequence 

 

thus by Hölder’s inequality 

 

since  is bounded in  by (14.31). The assumption (14.32) 

implies (14.23). Therefore, from Theorem 14.2 we obtain Theorem 14.5. □ 

Remark 14.6. 

The assumption (14.30) means that the selfadjoint and compact operator , 

defined by 

 

is positive which is equivalent to the fact that all eigenvalues of  are nonnegative which 

holds if and only if the function  has the form 
 

Equation 3.33. (14.33) 

 

Indeed, by the Hilbert–Schmidt theorem 

 

where  are the eigenvalues and  is the orthonormal system of the 

corresponding eigenfunctions of  (this system is finite or countably infinite). Thus 
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Further, since 

 

 

and , we have 

 

i.e. we have (14.33) with . 

1.1.  Problems 

1.  

Prove Theorem 14.2. 

2.  

Consider the initial-boundary value problem 
 

Equation 3.34. (14.34) 

 

 

 

Equation 3.35. (14.35) 

 

 

Equation 3.36. (14.36) 

 

Prove that  is a (“sufficiently smooth”) classical solution of (14.34) – (14.36) if and only if the function , 

defined by  satisfies (14.1), (14.24) where , , , 
 

Equation 3.37. (14.37) 
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Equation 3.38. (14.38) 

 

 

 

Equation 3.39. (14.39) 

 

If this function  satisfies (14.1), (14.24) with the operators (14.37), (14.38) and with  defined in (14.39), it 

is called a weak solution of (14.34) – (14.36). 

3.  

Assume that , 

 

where the functions  satisfy the Carathéodory conditions, 

 

for a.a. , , , 

 

with some positive constants  and . Further,  has the form (14.38) where 
 

Equation 3.40. (14.40) 

 

for a.a. , all . 

Prove that then for each , ,  there exists a solution of (14.1), (14.24) (i.e. a 

weak solution of (14.34) – (14.36) with , ). 

4.  

Let  and 

 

where , , , . Further, assume that  has the form (14.38) 

such that conditions (14.40) hold. 
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Prove that then for each , ,  there exists a solution of (14.1), (14.24), i.e. a 

weak solution of (14.34) – (14.36) with 

 

 

2.  15 Solutions in  

 

Now we consider equation (14.1) for . By using the notations of Section 11 we have 

Theorem 15.1. 

Assume that  satisfies (ii). Let 

 

 

be operators of Volterra type and assume that for each finite  their restrictions to  

satisfy ( ) and ( ) such that the coercivity of  holds in the sense of Theorem 9.6. 

Then for arbitrary , ,  there exists  such that 

, ,  and 
 

Equation 3.41. (15.1) 

 

 

Equation 3.42. (15.2) 

 

The proof is similar to that of Theorem 11.4, based on Remark 14.3. 

>From Theorems 14.5, 11.9 we obtain 

Theorem 15.2. 

Let  be a closed linear subspace of , ,  a bounded domain with 

sufficiently smooth boundary. Assume that the functions 

 

satisfy the assumptions of Theorem 11.9,  has the form (11.14),  satisfies the 

assumptions of Theorem 14.5, 

 

is of Volterra type and satisfies the assumptions of Theorem 14.5 for arbitrary finite . 

Then for arbitrary , ,  there exists  

such that , , 
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Now we formulate a theorem on boundedness of the solutions  of (15.1), (15.2). 

Theorem 15.3. 

Let the assumptions of Theorem 15.1 be satisfied such that with some  
 

Equation 3.43. (15.3) 

 

for all , and with some nonnegative , a positive 

constant ,  we have 
 

Equation 3.44. (15.4) 

 

Finally, let . 

Then for a solution  of (15.1), (15.2),  is bounded in , 

 and 
 

Equation 3.45. (15.5) 

 

If 
 

Equation 3.46. (15.6) 

 

with some constant  then 
 

Equation 3.47. (15.7) 

 

Proof. 

Applying both sides of (15.1) to  and integrating over , we obtain 
 

Equation 3.48. (15.8) 

 

By Remark 6.7 and (6.9) 
 

Equation 3.49. (15.9) 
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and by (14.8) 
 

Equation 3.50. (15.10) 

 

Further, by Young’s inequality 
 

Equation 3.51. (15.11) 

 

 

Equation 3.52. (15.12) 

 

Choosing sufficiently small , from (15.3), (15.4), (15.8) – (15.12) we obtain the 

inequality 
 

Equation 3.53. (15.13) 

 

 

 

Since , , , we obtain from (15.13) that  and 

 are bounded for  and . Finally, (15.6) implies 

(15.7). □ 

Now we consider examples for operators  which satisfy the assumptions of Theorems 14.5 - 15.3. 

The operator in Example 10.12 satisfies the conditions on  in Theorem 14.5 and the operator in Example, 

considered in Section 12 satisfies the conditions on  in Theorem 15.2. In the case  with some positive 

constant  and  the assumption on  in Theorem 15.3 are fulfilled. 

It is easy to show that the assumptions on  in Theorem 14.5 are fulfilled if e.g. 
 

Equation 3.54. (15.14) 
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where  is a Carathéodory function satisfying with some positive constant  
 

Equation 3.55. (15.15) 

 

 are linear and continuous operators, , , 

 

is a measurable function, satisfying 

 

Further, the assumptions on  in Theorem 15.2 are satisfied if (15.14), (15.15) hold for all , 

 

are linear operators of Volterra type and for all fixed finite , they map  into  

continuously. 

The assumptions on  in Theorem 15.3 are satisfied if 

 

with ,  and for all  

 

Finally, (15.6) is satisfied for the operator  of the form (14.29) if for a.a. , all  
 

Equation 3.56. (15.16) 

 

with some constant . 

Now we shall formulate conditions which imply a result on the stabilization of solutions  of (15.1) as . 

For simplicity we consider the case when  is “local”, i.e.  where  is 

defined for all  and . 

Theorem 15.4. 

Assume that the operator  is given by 

 where  satisfies the assumptions of Theorem 7.1 

such that for all  
 

Equation 3.57. (15.17) 
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with some constants  ( ), . (In this case  is uniformly monotone, see 

Definition 2.15.) The operator  and  satisfies ( ) and (15.6). Further, there exist 

, a continuous function  with 
 

Equation 3.58. (15.18) 

 

such that 
 

Equation 3.59. (15.19) 

 

and there exists a solution  of 
 

Equation 3.60. (15.20) 

 

Then for a solution  of (15.1) with  we have 
 

Equation 3.61. (15.21) 

 

 

Equation 3.62. (15.22) 

 

where  and there exists  such that 
 

Equation 3.63. (15.23) 

 

where . 

Proof. 

Since  and so its derivative with respect to  is , we may apply (15.1) to 

, and thus, integrating over  we obtain by (15.20) 
 

Equation 3.64. (15.24) 
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By using the notation , we obtain by Remark 6.7 and (6.9) 
 

Equation 3.65. (15.25) 

 

(see (15.9)) and by (14.8) 
 

Equation 3.66. (15.26) 

 

 

Further, by Young’s inequality 
 

Equation 3.67. (15.27) 

 

 

Choosing sufficiently small , by (15.17), (15.19), (15.24) - (15.27) we find 
 

Equation 3.68. (15.28) 

 

 

Since the right hand side is bounded for all  by (15.18), we obtain the second part of 

(15.22), i.e. 
 

Equation 3.69. (15.29) 

 

Consequently, for any  we have 
 

Equation 3.70. (15.30) 
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where  and thus . 

Thus, for any  there exists  such that for  

 

Hence, there exists  such that 
 

Equation 3.71. (15.31) 

 

In order to prove (15.23), take the limit  in (15.30), then we find 

 

 

 

i.e. we have (15.23). 

The first estimate in (15.22) can be obtained as follows. If  then by 

Hölder’s inequality 

 

 

 

because of the second part of (15.22) and . In the case  the first multiplier in 

the last term is the  norm of the function . 

Now we apply again (15.1) to  and integrate over , then we obtain by 

(15.20) 

 

 

whence, similarly to (15.28), we find 
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Equation 3.72. (15.32) 

 

 

Since  is a continuous and linear operator, by (15.31) 

 

thus (15.18), (15.29) imply 

 

Thus  exists and is finite, further, by the first estimate in (15.22), it must be , 

i.e. we have (15.21) which completes the proof of Theorem 15.4 □ 

The following example satisfies the assumptions of Theorem 15.4. 

Example 15.5. 

Set  where 

 

 where  or , , ,  and 

 

where the functions  satisfy the (uniform ellipticity) condition (15.16). Finally, 

 

It is well-known (see, e.g. [2]) that for a bounded domain  with sufficiently smooth boundary and 

, there exists a unique solution  solution of the linear equation 

 

with the boundary condition 

 

respectively, where  denotes the “conormal derivative” of  on  (with respect to the differential operator in 

the differential equation). Thus we have a solution of (15.20). 

2.1.  Problems 

1.  

Show that the operator  defined by (15.14) satisfies the assumptions of Theorem 14.5. 
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2.  

Show that the Example 15.5 satisfies the assumptions of Theorem 15.4. 

3.  

Formulate and prove an existence theorem on problem (15.1), (15.2) with the operators ,  

considered in Problem 3 of Section 14 with arbitrary . 

4.  

Formulate and prove an existence theorem on problem (15.1), (15.2) with the operators ,  

considered in Problem 4 of Section 14 with arbitrary . 

3.  16 Semilinear hyperbolic equations 

 

In this section we shall consider the equation (14.1) in the case when  and operator  has a particular 

form (see (16.2)), further,  is a closed linear subspace of , , . 

3.1.  Existence of solutions in  

Theorem 16.1. 

Let  be a closed linear subspace, , . Assume that  

satisfies ( ) (see Section 14) and 
 

Equation 3.73. (16.1) 

 

with some constant  (i.e.  satisfies (15.6)). 

Let operator  have the form 
 

Equation 3.74. (16.2) 

 

 

are measurable in  and , respectively,  has the Volterra property and 

 

for a subsequence. Further, there exist positive constants  such that 
 

Equation 3.75. (16.3) 

 

 is continuously differentiable function satisfying 
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Equation 3.76. (16.4) 

 

(In the case ,  may be any nonnegative number.) 

Then for any , ,  there exists  such that 
 

Equation 3.77. (16.5) 

 

 

Equation 3.78. (16.6) 

 

 

Equation 3.79. (16.7) 

 

   

Remark 16.2. 

One can show (see, e.g [93]) that  is dense in the Hilbert space , thus 
 

Equation 3.80. (16.8) 

 

is an evolution triple, hence 

 

Consequently, since 

 

which implies by  and (16.8) 

 

Since , the initial condition  makes sense. 

Proof of Theorem 16.1. 

We apply Galerkin’s method. Let  be a linearly independent system in  such that 

the linear combinations are dense in . We want to find the -th approximation of  in the 

form 
 

Equation 3.81. (16.9) 
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such that for all  
 

Equation 3.82. (16.10) 

 

 

 

Equation 3.83. (16.11) 

 

where  are linear combinations of  satisfying 
 

Equation 3.84. (16.12) 

 

By the existence theorem for a system of functional differential equations with Carathéodory 

conditions (see [32]) there exists a solution of (16.10), (16.11) in a neighborhood of . The 

maximal solution of (16.10), (16.11) is defined in . Indeed, multiplying (16.10) by  

and taking the sum with respect to , we obtain 

 

 

Integrate the above equality over , we find by (14.8), Remark 6.7 and Young’s inequality 
 

Equation 3.85. (16.13) 

 

 

 

 

where the constant is not depending on  and , because of ( ), (16.3), (16.4), (16.12) 

 

and by Sobolev’s imbedding theorem (see [1] and also Theorem 4.17),  is 

continuously imbedded into  since 
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By ( ), (16.3), (16.4), (16.13) implies 
 

Equation 3.86. (16.14) 

 

with some constant , not depending on  and  (but depending on , , 

.) Thus by Gronwall’s inequality 
 

Equation 3.87. (16.15) 

 

The constant is not depending on  and  (but depending on , , ). Thus 

(16.1), (16.13) imply 
 

Equation 3.88. (16.16) 

 

By (16.15), (16.16) the maximal solution  of (16.10), (16.11) is defined on  and  

is bounded in ,  is bounded in . 

Consequently, there are a subsequence of , again denoted by , and  

such that 
 

Equation 3.89. (16.17) 

 

 

Equation 3.90. (16.18) 

 

which means that for any fixed  and  

 

 

because  (and ) are linear continuous functionals on  (and 

, respectively). 

Since the imbedding of  into  is compact (if  is bounded and its boundary is 

“sufficiently good”, see Theorem 4.1), by Theorem 10.1, (16.17), (16.18), for a subsequence 
 

Equation 3.91. (16.19) 
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As  is a linear and continuous operator, by (16.17), for all  
 

Equation 3.92. (16.20) 

 

and by (16.18) 
 

Equation 3.93. (16.21) 

 

with respect to the weak convergence of the space of distributions . 

Further, by (16.19) and the continuity of  
 

Equation 3.94. (16.22) 

 

By (16.3), (16.4) 
 

Equation 3.95. (16.23) 

 

 

because for  we have by Sobolev’s imbedding theorem (see, e.g [1] and 

also Theorem 4.17) 

 

Thus by the Cauchy–Schwarz inequality the sequence of functions  is 

equiintegrable in  for each fixed  and a.a. . So by Vitali’s theorem for a.a. 

 
 

Equation 3.96. (16.24) 

 

Further, by the assumption of our theorem, for a.e. , for a subsequence 
 

Equation 3.97. (16.25) 

 

hence for all fixed , a.a.  
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Equation 3.98. (16.26) 

 

 

because for a.a. ,  is bounded in  and 

 

Let  be an arbitrary element and  a sequence, approximating  with 

respect to the norm of . By (16.10) we have 

 

 

which implies as  

 

 

By using (16.20), (16.21), (16.24), (16.26) we obtain from the above equality as  
 

Equation 3.99. (16.27) 

 

 

Equality (16.27) means that for a.a. ,  is weakly converging to an element of  

and this limit as a function of  belongs to . Thus  and it is not 

difficult to show that 
 

Equation 3.100. (16.28) 

 

According to (16.17), (16.18) ,  thus Theorem 6.6 implies

 and for  with the property ,  we have for all  

 

 

Hence by (16.11), (16.12), (16.17), (16.18) we obtain as  

 

for all  which implies . 

Similarly, since , , by using Remark 16.2, we obtain 

 and so by (16.27) Theorem 16.1 is proved. □ 
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3.2.  Uniqueness and smoothness of solutions 

 

Now we formulate and prove a theorem on the uniqueness and continuous dependence of the solution on , , 

. 

Theorem 16.3. 

Assume that the conditions of Theorem 16.1 are fulfilled so that  with the 

property 
 

Equation 3.101. (16.29) 

 

 is continuous and satisfies 
 

Equation 3.102. (16.30) 

 

Then the solution of (16.6), (16.7) is unique. Further, if  is a solution of (16.6), (16.7) with 

, ,  then for 

 

we have 
 

Equation 3.103. (16.31) 

 

 

where  is a function, the values of which are bounded if , ,  are 

bounded and 

 

Proof. 

Assume that  is a solution of (16.6), (16.7) with , , . Let 

 be an arbitrary fixed number and apply (16.6) (with ) to , defined by 

 

 

It is not difficult to show that 
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Equation 3.104. (16.32) 

 

 

and thus 

 

 

Integrating over , by (16.32) we obtain 
 

Equation 3.105. (16.33) 

 

 

By Remarks 6.7, 16.2 and (16.32) 

 

 

Since , integrating by parts, by (14.8) we get from (16.33) 
 

Equation 3.106. (16.34) 

 

 

 

By using the definition of  and the notation  we have 
 

Equation 3.107. (16.35) 

 

and so by (16.1) 
 

Equation 3.108. (16.36) 
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By using the notation , we obtain by integration by parts and Young’s 

inequality 
 

Equation 3.109. (16.37) 

 

 

Similarly, by (16.35) 
 

Equation 3.110. (16.38) 

 

and by (16.3) 
 

Equation 3.111. (16.39) 

 

(  denote constants, depending on .) 

Finally, the last term on the right hand side of (16.34) can be estimated as follows: by (16.3), 

(16.30) and Lagrange’s mean value theorem 
 

Equation 3.112. (16.40) 

 

 

 

 

where 

 

Since 

 

 is continuously imbedded into  and , and so we may apply Hölder’s inequality 

by : 
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Equation 3.113. (16.41) 

 

 

 

Since  and according to the proof of Theorem 16.1, their  

norm can be estimated by a function of , , , the values of which are 

bounded if , ,  are bounded (see (16.14) – (16.16)), we obtain from 

(16.40), (16.41) and  (for ) that 
 

Equation 3.114. (16.42) 

 

 

 

 

where  is bounded if , ,  are bounded. 

Choosing sufficiently small , we obtain from (16.34), (16.36) – (16.39), (16.42) with 

some  

 

 

Hence by Gronwall’s lemma 

 

 

Thus we have (16.31) and, consequently, the uniqueness of the solution of (16.6), (16.7). □ 

If , ,  satisfy certain smoothness conditions then we have smoother solutions of (16.6), (16.7). 

Theorem 16.4. 

Assume that the conditions of Theorem 16.3 are fulfilled so that the restriction of (the linear 

and continuous operator)  to  is continuous operator from  into 

; 
 

Equation 3.115. (16.43) 
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Then there exists a (unique) solution 
 

Equation 3.116. (16.44) 

 

of (16.6), (16.7) satisfying 
 

Equation 3.117. (16.45) 

 

If  is such that for any 
 

Equation 3.118. (16.46) 

 

 

then for the solution  of (16.6), (16.7) we have 
 

Equation 3.119. (16.47) 

 

Proof. 

We apply Galerkin’s method and, similarly to the proof of Theorem 16.1, we want to find the 

solution  of (16.6), (16.7) as the limit of functions  given by (16.9) with , 

satisfying (16.10), (16.11) and instead of (16.12) we have 
 

Equation 3.120. (16.48) 

 

Since  is continuous, we may differentiate (16.10) with respect to , so we obtain 
 

Equation 3.121. (16.49) 

 

 

Multiplying (16.49) with  and taking the sum with respect to , we find 
 

Equation 3.122. (16.50) 
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Integrating both sides of (16.50) over , we obtain (similarly to (16.13)) 
 

Equation 3.123. (16.51) 

 

 

 

Further, multiplying (16.10) by  and summing with respect to , we obtain 

 

 

thus 

 

 

So by (16.48) and Sobolev’s imbedding theorem (see (16.23)) 
 

Equation 3.124. (16.52) 

 

since by the assumption of our theorem 

 

Finally, the third term on the left hand side of (16.51) can be estimated as follows: (similarly 

to (16.41), (16.42)) by Hölder’s inequality with  
 

Equation 3.125. (16.53) 
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since  is bounded in . 

Thus, (16.51) - (16.53) (16.1), (ii) and Young’s inequality imply 

 

and so by Gronwall’s lemma for all ,  
 

Equation 3.126. (16.54) 

 

Hence, similarly to the proof of Theorem 16.1 we obtain 

 

 

we have (16.17), too, for the (unique) solution of (16.6), (16.7). 

If (16.46) holds then from the equation (16.6) and (16.44), (16.45) we obtain directly (16.47). 

□ 

Remark 16.5. 

According to [51] the operator  given in (14.29) satisfies (16.46). 

3.3.  Solutions in  

 

Similarly to the previous existence theorems, one can prove existence of solutions to (16.6), (16.7) for 

. 

Theorem 16.6. 

Assume that the conditions of Theorem 16.1 are fulfilled for all  with 

 

satisfying (16.3) for all . Then for any , ,  there 

exists  such that ,  and for a.a. 

, (16.6) and (16.7) hold. 

Theorem 16.7. 

Assume that the conditions of Theorem 16.4 are fulfilled for all finite  and the 

conditions of Theorem 16.6 are satisfied, too. If 

 

then there exists a (unique) solution of (16.6), (16.7) 

 

Further, (16.46) implies . 

Now we formulate and prove a theorem on the “boundedness” of the solution of (16.6), (16.7) for . 
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Theorem 16.8. 

Assume that the conditions of Theorem 16.7 are fulfilled such that , on  

assuming only  and  is a solution of (16.6), (16.7) for . 

If with some ,  for a.a.  then 
 

Equation 3.127. (16.55) 

 

 

Consequently, 

 

Further, 
 

Equation 3.128. (16.56) 

 

also imply (16.55). Consequently, 
 

Equation 3.129. (16.57) 

 

Finally, if  and  then 

 

and thus 
 

Equation 3.130. (16.58) 

 

with some constant . 

Proof. 

Let  be a solution of (16.6), (16.7) for . Applying (16.6) to , we obtain 

that for a.a.  
 

Equation 3.131. (16.59) 
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Integrating over  with , we find, similarly to (16.13) 
 

Equation 3.132. (16.60) 

 

 

 

where the constant  is independent of . Thus 
 

Equation 3.133. (16.61) 

 

with some constant  (independent of ) and 

 

>From (16.61) by Gronwall’s lemma we find 
 

Equation 3.134. (16.62) 

 

Thus by (16.60) we obtain (16.55). 

If  and , we obtain from (16.59), similarly to (16.60) 
 

Equation 3.135. (16.63) 

 

 

By (16.56) and (16.63) with sufficiently small , we obtain 

 

and so we obtain from (16.63) (16.55). Further, by (16.55) 

 

with some positive constant . Thus by using Gronwall’s lemma we obtain 
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which implies (16.57). 

Finally, if  and , we have by (16.59), similarly to (16.63), 
 

Equation 3.136. (16.64) 

 

 

 

By using the notation 

 

and thus 
 

Equation 3.137. (16.65) 

 

with constants . Set , then from (16.65) we obtain 

 

whence 

 

if  and . Thus, assuming , we obtain for  
 

Equation 3.138. (16.66) 

 

Inequality (16.66) implies that  is bounded for  because if  then the 

right hand side of (16.66) is negative, thus the nonnegative function  is decreasing. 

Consequently, there is a constant  such that 

 

 

and by (16.64) we have (16.58). □ 

Remark 16.9. 

Assume that the conditions of Theorem 16.8 are fulfilled in the following form: there exist 

 and  such that 
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Equation 3.139. (16.67) 

 

(Such  exists if  is an elliptic operator with , considered in Theorem 14.5) 

Then (16.55) holds. Indeed, taking the difference of (16.59) and (16.67), we obtain (16.63) 

with , instead of  (in the third term on the left hand side with ) and with 

, instead of . 

Theorem 16.10. 

Assume that the conditions of Theorem 16.8 are satisfied in the more general form, 

formulated in Remark 16.9, i.e. there exists  such that  and 

 is a solution of (16.67), i.e. . Further, 
 

Equation 3.140. (16.68) 

 

Then for the solution  of (16.6), (16.7) 

 

and there exists  such that 

 

Proof. 

According to Theorem 16.8 
 

Equation 3.141. (16.69) 

 

thus 
 

Equation 3.142. (16.70) 

 

Further, applying Theorem 6.6 to  (which is constant in ), we obtain by 

using  
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which implies 

 

Hence by (16.70) 

 

as , i.e. there is some  such that 

 

and by (16.69) 

 

□ 

Theorem 16.11. 

Assume that the conditions of Theorem 16.10 are satisfied, further, ,  

and  is bounded. Then 
 

Equation 3.143. (16.71) 

 

 

Further, if  then for the function  satisfying 

 (see Theorem 16.10) we have with arbitrary  
 

Equation 3.144. (16.72) 

 

If  is defined by 

 

(see Theorem 14.5) then equation (16.72) means that  is a weak (distributional) solution of 

 

(with some homogeneous boundary conditions). 

Sketch of the proof. 
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One applies the arguments in the proof of Theorem 16.4. Since  is bounded, the third term 

on the left hand side of (16.51) can be estimated as follows 

 

 

Choosing sufficiently small , we obtain from (16.51) 

 

Thus Gronwall’s lemma implies (16.71). Applying (16.6) to , we obtain 

(16.72) as . □ 

3.4.  Problems 

1.  

Prove Theorem 16.6. 

2.  

Prove Theorem 16.7. 

3.  

Prove Theorem 16.11 
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qualitative proprties, 89 
stabilization, 93 
uniqueness, 9, 52, 135 

T 
theorem 

Brouwer’s fixed point theorem, 7 
Browder, 23 
Vitali, 19 

V 
Volterra property, 88 

W 
weak solution 

Dirichlet problem, 2 
nonlinear parabolic equation, 49 
second order evolution equation, 111 
semilinear hyperbolic equation, 130 
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