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Chapter 1. NONLINEAR
STATIONARY PROBLEMS

1. 1 Introduction

The aim of these lecture notes is to give a short itroduction to the theory of monotone type operators, and by
using this theory to consider abstract stationary and evolution equations with operators of this type. Then the
abstract theory will be applied to “weak” solutions of nonlinear elliptic, parabolic, functional parabolic,
hyperbolic and functional hyperbolic equations of “divergence type”. By using the theory of monotone type
operators, it is possible to treat several types of nonlinear partial differential equations (not only semilinear
PDEs) and to prove global existence of solutions of time dependent problems. However, there are a lot of
problems in physics, chemistry, biology etc. the mathematical models of which are nonlinear PDEs but the
monotone type operators can not be applied to them. These equations need particular treatment. (see, e.g. [13],
[18], [22], [23], [36], [38], [52], [65], [67]).

The lecture notes are based mainly on the theory of second order linear partial differential equations (see, e.g.,
[67], [27]), some fundamental notions and theorems of functional analysis (see, e.g., [42], [66], [92], [8]) and
the theory of ordinary differential equations (see, e.g., [88], [19], [35]). The importance of linear and nonlinear
partial differential equations in physical, chemical, biological etc. applications is well known (see, e.g., the
above references). The classical results on linear and quasilinear second order partial differential equations can
be found in the monographs [28], [31], [37], [44], [51], [43], [49] and also in the books [7], [27], [60], [62],
[64], [67], [89].

Partial functional differential equations arise in biology, chemistry, physics, climatology (see, e.g., [13], [18],
[21]-{23], [36], [38], [52], [65], [91] and the references therein). The systematic study of such equations from
the dynamical system and semigroup point of view began in the 70s. Several results in this direction can be
found in the monographs [60], [89], [91]. This approach is mostly based on arguments used in the theory of
ordinary differential equations and functional differential equations (see [24], [32]-[34], [58], [59]).

In the classical work [50] of J.L. Lions one can find the fundamental results on monotone type operators and
their applications to nonlinear partial differential equations. Further important monographs have been written by
E. Zeidler [93] and H. Gajewski , K. Groger , K. Zacharias [30], S. Fuc¢ik , A. Kufner in [29]. A good summary
of further results on monotone type operators, based on degree theory (see, e.g., [20]) and its applications to
nonlinear evolution equations is in the works [8] and [57] of V. Mustonen and J. Berkovits . By using the theory
of monotone type operators one obtains directly the global existence of weak solutions, also for higher order
nonlinear partial differential equations, satisfying certain conditions which are more restrictive (in some sense)
than in the case of the previous approach.

It turned out that one can apply the theory of monotone type operators (e.g. pseudomonotone operators) to
nonlinear elliptic variational inequalities, further, to nonlinear parabolic and certain hyperbolic functional
differential equations and systems to get existence and uniqueness theorems on weak solutions and results on
qualitative properties of weak solutions, including, e.g., “strongly nonlinear” and “non-uniformly” parabolic
equations.

In Chapter 1 we shall consider nonlinear stationary problems and as particular cases nonlinear elliptic
differential equations, functional equations and variational inequalities. In Chapter 2 first order evolution
equations and as particular cases nonlinear parabolic differential equations, functional parabolic equations will
be considered. Finally, in Chapter 3 second order nonlinear evolution equations and certain nonlinear hyperbolic
equations will be treated. In each chapter the “general” results are illustrated by examples.

In this section we shall give a motivation of the abstract stationary problem and we shall formulate it, by using
the definition of the “weak” (“generalized”) solution to boundary value problems for nonlinear elliptic equations
of “divergence type”.

First we recall the definition of the weak solution to the linear elliptic equation of the form
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Equation 1.1. (1.1)

— Z DjlajpDiu) + cu = f in the bounded domain ©Q C R"
Gk=1

(D-f' = =) with the Dirichlet boundary condition

Equation 1.2. (1.2)
t|aa = .

Assuming that « is a sufficiently smooth (for simplicity, e.g. # € Cg(ﬁ)) solution of (1.1), (1.2) and 912 is
sufficiently smooth (e.g. C* or in some sense piecewise C'* surface), multiply (1.1) by a test function v € C (€2)
and integrate over €, by using Gauss’s theorem , we obtain

Equation 1.3. (1.3)

> f au(Du)(Dje) + f cur = f f.
L] L] L]

dke=1""

Assuming @k ¢ € L™ () and f € L*(€2), (1.3) holds for arbitrary element « of the Sobolev space Hi (2) (See,
e.g. [67].) Therefore, weak solution of the Dirichlet problem (1.1), (L1.2) is defined as a function # € H'(€2),
satisfying (1.3) for all * € Hq(€2) and the boundary condition (1.2) where |22 means the trace of # € H'(€2),
In the particular case when ¥ = 0, the weak solution of (1.3) is a function € Hi(£2),

Thus every classical solution * £ c? (5) of (1.1), (1.2) is a weak solution and it is not difficult to show that if u

is a weak solution and it is sufficiently smooth (e.g. © € C*(£2)), then u is a classical solution, too. The details
of the above arguments can be found e.g. in [67], [44].

The weak solution of the nonlinear equation of “divergence form”

Equation 1.4. (1.4)

— Z Djlaj(x, u(x). Du(x))] + ao(z. u(z), Du(r)) = f(r) for all x € Q

i=1

(Du = (Dyu..... Dyu)) with the Dirichlet boundary condition (1.2) is defined in a similar way. Assume that «

is a classical (sufficiently smooth) solution of (1.4). Multiply the equation (1.4) by a test function v € Ci(€2)
and integrate over 2. By Gauss’s theorem we obtain

Equation 1.5. (1.5)

Zf ajlr, u(x), Du(z))Djv(x)ds —I—f ap(x, w(x), Du(x))v(r)ds =
pfft 2

f floyw(x)dr.
0

Later we shall see that if the functions ¢ satisfy a certain growth condition (see later Condition Az) then for an
arbitrary element u of the Sobolev space W' ()1 < p < ) (see the definition e.g. in [67], [1], [93]) we have
aj(x. u.Du) € LU(Q) where 1/p + 1/a =1, Consequently, (L5) holds for all test functions * € W57 ()
because W 7 (€2) i the closure of C&(£2) with respect to the norm of W #(€2),
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Thus, similarly to the lineap¢asgthe weak solution,0f (1.4), (1.2) is defined,as a1funptign ”-iﬁ]'[‘rl"’(ﬂ)

satisfying (L.5) for all and (1.2) where , denotes(dhe trace of ane 1 lingdhe
particular case the weak solution is a function satisfying (1.5) for all .
Similarly to the linear case, a sufficiently smooth function is a classical solution if and only if it is a weak
solution.

Assume that the functions < fulfil the above mentioned growth condition such that @, (r. u. Du) € L*(£2) for all

u € WyP(€2) Then equation (1.5), i.e. the fact that « is a weak solution (in the case ¥ = U) can be interpreted in
the following way. Denote the left hand side of (1.5) by (A(u). v}, ie.

Equation 1.6. (1.6)

{Alu), v} = Zf aj(x, ulx), Dulx))Djvlx)ds+
j=174

f ag(r, ulx), Dul(x))e(x)dr.

02

l.p ' Yo . . . . . 2 rl.p -
For a fixed # € Wy () {A(u). v} js a linear continuous functional applied to ¥ € Wi ™€) j.e. A(u) belongs

- ~l.p
to the dual space of V" =Wq™(22). Thus, according to (1.6), we have a (nonlinear) operator A : V — 17*,
Further, by using the notation

Equation 1.7. (1.7)
{Fov) =f flx)v(x)der,
]
we have F e v*if f € L*(€2),

Summarizing, in the case ¥ = U one may write (1.5) in the abstract form

Equation 1.8. (1.8)
Afu) = F
where A : V7 — V¥ is a nonlinear operator and £ is a given element of17*,

In Section 3 we shall show that in the case V = W"'”(€2) equation (1.8) is an abstract form of weak formulation
of (1.4) with a Neumann type homogeneous boundary condition.

In the next section we shall formulate and prove existence and uniqueness theorems regarding (1.8), by using
the theory of monotone type operators.

2. 2 Existence and uniqueness theorems

First we formulate some basic definitions for (possibly nonlinear) operators A : 17 — 17*. Denote by 17 a real
Banach space and V* its dual space.

Definition 2.1.

Operator A : V" — 17* s called boundedif it maps bounded sets of V" into bounded sets of 17*.

Definition 2.2.

Operator A : V' — 17" is said to be hemicontinuousif for each fixed 1. u2. v € V" the function
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A {A(ug + Auz), vh, A ER is continuous.

Definition 2.3.

Operator A : ¥ — 17" is said to be monotoneif
{A(u1) — Alua). uy — ua) = 0 for all uy, uz € V.
If for w1 # 12

{Aluy) — Aluz), uy —uz} = 0,

A is said to be strictly monotone.

Definition 2.4.

A bounded operator A : ¥ — V™ is said to be pseudomonotoneif

Equation 1.9. (2.1)

(w;) = w weakly in V. lmsup{A{u;).u; —u} <0

d—roc

imply

Equation 1.10. (2.2)
lim {A{u;), vy —uy =0 and (A(u;)) = A(u) weakly in V™.

Proposition 2.5.

Let 1 be a reflexive Banach space. Assume that A : V© — 1"* is bounded, hemicontinuous and
monotone. Then A is pseudomonotone.

Proof.
Assume (2.1). Since A is monotone,
{A(u;) — Alu),u; —u) = 0,

hence

Equation 1.11. (2.3)
{Au;),uy —uy = {Alu), u; —ud

By (2.1), we have

Equation 1.12. (2.4)

lim {A{u), u; —uy =0,

thus (2.1), (2.3), (2.4) imply

4
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Equation 1.13. (2.5)

n i 1
lirn {Alui)u; —u) =0

a

In order to show the second part of (2.2) consider

Equation 1.14. (2.6)

w=[(1—Au+ Av

with arbitrary © € V" and A = 0. Since A is monotone,

{A(u;) — Alw), uj —w) = 0,

whence

{Alug)owy —up 4+ {Alug ), v —w) — {Alw), u; — oy — (Alw)u —w) 20

or equivalently

Equation 1.15. (2.7)
(Afwg)owy —u) + (Alu; ) Mo — )y — (A(w). uy — o) — (Alw). AMu —v)) = 0.
By (2.1),

lim {A{w), u; —u)=0

==
and so (2.5), (2.7) imply
liminf{A(u; ), Alu—v)) = {(A{w), AMu — )},

thus, dueto A = 0

Equation 1.16. (2.8)
liminf{A(u; ), v—v) = {(Alw), v —v) = {A{1 — X)u+ Av), v —v)

i

Since A is hemicontinuous, asA — +0 we obtain from (2.8)

Equation 1.17. (2.9)
Liminf{A(u;), (u—v) = {Alu), (v — v)}

o

The sequence (A(u)) is bounded in 17, so there is a subsequence ({1, J) oflA(115)) which is
weakly convergent to some X € V™ thus from (2.9) we obtain

Equation 1.18. (2.10)
{x.u—v) = {(Alu),u — v

As (2.10) holds for arbitrary + € V', it follows ¥ = “A{u).Thus the second part of (2.2) holds
for a subsequence of (3. We show that it must hold for the whole sequence, by using the
following trick.

5
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Cantpr’s trick Assume the contrary. Then there exist £ > 0, a subsequence (i) of (i) and
such that

Equation 1.19. (2.11)
[{Alu;) — Alu). v} = £0.

Applying the above argument to the sequence (%) (instead of (1.;]), we obtain a subsequence
(i, ) of (t3) for which

(Al )) — Alu) weakly in V7™
which contradicts to (2.11). o
Definition 2.6.
Operator A : V" — V" is called demicontinuousif
(u;) — u strongly in V implies (A(u;)) — Alu) weakly in V™.
Proposition 2.7.
If a bounded operator A : ¥ — ¥ is pseudomonotone then A is demicontinuous.
Proof.
Assume that () — i strongly in V. Then
(A (). wj — ] < (| Al -[luj — ullvy —0
because [[4(1)[lv+ is bounded. Since A is pseudomonotone,
(A(u;)) = A(u) weakly in V7"
O
Definition 2.8.
Operator A : V' — V* is called belonging to (S)-+if
(1) = u weakly in V. limsup{A(u;), u; — u) <0
imply (1) —  strongly in V.
From definitions 2.4, 2.6, 2.8 immediately follows

Proposition 2.9.

If A: 1V — V*is bounded, demicontinuous and belongs to (5)+ then A is pseudomonotone.

Definition 2.10.

Operator A : V" — V™ is called coerciveif

litn 7{;{(”)' u) = +nc.
=0 lu|

Remark 2.11.

6
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If the linear operator A is strictly positive in the sense that it satisfies
{Au, u) = eflul)?
with some constant ¢ = 0 then A is coercive.

Now consider the equation

Equation 1.20. (2.12)
Afu) = F

with an arbitrary ¥ = V" where A : 17 — 17" is a given (possibly nonlinear) operator. First we prove an
existence theorem when A is pseudomonotone. As a consequence, we shall obtain an existence and uniqueness
theorem when A is strictly monotone.

Theorem 2.12.
Let 17 be a reflexive separable Banach space. Assume that A: 1 — V™ is bounded,
pseudomonotone and coercive. Then for arbitrary " € V* there exists a solution « € V" of
equation (2.12).

The proof of this theorem is based on Galerkin’s method and on the following lemma.

Lemma 2.13.

(“acute angle lemma”) Let ¢ : " — " be a continuous function and suppose: there exists
p = O sych that

Equation 1.21. (2.13)
(g(&). Emn 20 for €] = p.

Then there exists o € ™ such that

Equation 1.22. (2.14)
gléo) =0, |&| < p.
Proof.

We prove by contradiction. Assume that (2.14) is not true. Then 9(&) # 0 for [<| = p and thus

g(&)
lg(&)]”

is a continuous function mapping the closed ball B, = {¢ € B : [£] < p} into itself, because
|h(E)] = p. By Brouwer’s fixed point theorem / has a fixed point &7, i.e.

hi(&)=—p

h(E*)=¢&* & =p.
Then
(e ) M mn = 172 =p* >0

which is impossible since by (2.13)

7
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Proof of Theorem 2.12.

Since V" is separable, there exists a system #1. zz.... of linearly independent elements of 1
such that their linear combinations are dense in 7. Denote by Vin the set of linear
combinations of 1. z2. . ... Zin,

First by using Galerkin’s approximation method , we construct the “m-th approximation”
tm € Vin of the solution u £ 17 of (2.12) such that

Equation 1.23. (2.15)
(Al )z = Flozgh, i=1.....m,

or equivalently

Equation 1.24. (2.16)

(Al ). vy = (F.v),  for v € 1,.

In order to do this, we apply Lemma 2.13 to the function ¢ = (91. 2. . ... gm), defined by
gil§1,....&m) ={A&12a+ -+ &nam) 25} —(Fl2z;), £€R™, j=1,...,m.

Since A is bounded and pseudomonotone, A is demicontinuous by Proposition 2.7 which

m
implies that the functions #i are continuous. Further, introducing Z_j=15-fz-f' by ¥ and
assuming ¥ # 0, we have

(&) Ehrm =" 068 = <-‘1(Z £i%j): Z&.fz_f> - <le€_f3_f> =

=1 4=1 4=1

4=1

{Aly). ) {F.y) {Aly). v} i
{ R R A

v lyllv lyllv

Operator A is coercive, hence

{Aly). v}
im — =
ll—2 [lyllv

thus the right-hand side is positive if [lullv is sufficiently large, which is satisfied if <] is
sufficiently large. So by Lemma 2.13 there exists & € B™ such that () = 0, i.e. we have a
solution .. of (2.15).

If V" is of finite dimension, Theorem 2.12 is proved. Consider the remaining case when V" is of
infinite dimension. Then we have a sequence (tm) of elements satisfying (2.16). The
coercivity of A implies that (=) is a bounded sequence in V. Indeed, assuming that (tm ) is
not bounded, we would have a subsequence (1) such that

lm [ty ||v = =,
E—roc

which is impossible because by (2.16)

) {A (e, ) o, b )
U=HmwwmwﬁhmmzPﬁ$ﬁiu—wm-wwm~+x
g ||V

8
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as k — oo since A is coercive.

The operator A : V' — V* is bounded thus the sequence (<1(tn )) is bounded in V*. Since V" is
reflexive, there are v € V', X € V" and a subsequence (tm, ) of {tm ) such that

Equation 1.25. (2.17)

() =+ u weakly in V

and

Equation 1.26. (2.18)
(Alttm, )) = x weakly in V7™,

Now we show that X = £, Due to (2.16), for arbitrary fixed finite linear combination + of

2. Z9. ...

Equation 1.27. (2.19)

(Al ). vy = (Fov)

for sufficiently large k. From (2.18), (2.19) as k& — oc we obtain {x: v} = {¥. v} for any finite
linear combination of z1. z2. .... Since the finite linear combinations are dense in 17, we find

x = I,

Finally, pseudomonoticity of A implies “(u) = x(= #7) . Indeed, according to (2.17),
(1) = 1 weakly in V" and by (2.16), (2.18)

Equation 1.28. (2.20)

{A(tin,, s tany, — ) = {Altm,, ) ) — (A, ). u) =

{E g — (Al ) uy = (Fou) — Ou) =0 as B — oo,

O

Theorem 2.14.

Let " be a reflexive separable Banach space and assume that A: V¥ — V™ is bounded,

hemicontinuous, monotone and coercive. Then for arbitrary £° € V* there exists a solution
u < V of (2.12). If A is strictly monotone then the solution is unique.

Proof.

By Proposition 2.54 is pseudomonotone, thus Theorem 2.12 implies the existence of a
solution u & V" of (2.12). Assume that A is strictly monotone and

Afu)=F for j =1, 2
Then
0= {A(uy) — Aluz), u1 — uz)

whence 11 = 2, O

9
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Definition 2.15.

Operator A: V" — 17" is said to be uniformly monotoneif there exists a strictly monotone
increasing continuous function

a:|0,00) = [0,00) with a(0) =0, lima = +nc

+oe

such that
{Alur) — Aluz), wy — w2} = al|uy — ua|v)|ur — wz|lv for all uy, us € V.

Remark 2.16.

If A is uniformly monotone then it is strictly monotone. Function a may be chosen as
a(t) = et~ ! with constants ¢ > 0. p > 1,

Remark 2.17.

If A is uniformly monotone then

Equation 1.29. (2.21)

[Af1) — Aluz)|lv. = alllur —uafv).  wuzeV

because

[Alu1) — Aluz)llv «[lur —uzllv = (A(u1) — Aluz), ur — uz) =

al|lwy — wel|v )| — walv.

If (2.21) holds then operator A is called stable. In this case the solution of the equation (2.12)
is unique and the solution « of (2.12) depends continuously on the right hand side £ € V7%,
because by (2.21)

1 — wa|yv < a~! ([ A(ur) — Alua)|v ).

a=':[0,2¢) = [0. ) is a continuous function and @ (0) =0,

Remark 2.18.

According to the proof of Theorem 2.12 the sequence (t), constructed by Galerkin’s method,
contains a subsequence which converges weakly in 17 to a solution « of (2.12). If the solution
of (2.12) is unique (e.g. if A is strictly monotone) then also the sequence (=) must converge
to u. Indeed, assuming the contrary, one gets contradiction, by using Cantor’s trick (see in the
proof of Proposition 2.5).

If Ais uniformly monotone then (1n) — 1 also with respect to the norm of V. Indeed, let
alt) = a(t)t which clearly has the same properties as a, further,

al|[r — ullv) = al|ltn — wlv)||ten — uwllv < {(Aluy) — Alu), uy —u) =
{Alun) ttry — up— {Alu), uy —u) = 0 as u — o

by (2.17), (2.20), hence

lim ||uy, — ulyw =0
Ti—» 3T

3. 3 Application of monotone operators

10
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Now we shejl'apaly Theorem 2,14 fo-the.case when V" is a closed linear subspace of the Sobolev space WP(Q),

containing : v — V¢ , is a bounded domain with sufficiently smooth boundary). Further, the
operator will be given by

Equation 1.30. (3.1)

{Alu), v} = Z fE aj(x, ulx), Dulx))Djvlx)ds+
=1

f ag(r, u(r), Du(e))v(r)dr, w,veV
¥

where the functions @; : € x B"*' — R satisfy conditions which will imply the assumptions of Theorem 2.14.
(A1) Assume that the functions @ : £ R R satisfy the Carathéodory conditions , i.e. for a.a. fixed

= € , the function & — aj(x. &) & € B" s continuous and for each fixed & € "+ v a;(x.£) » € 0 is
measurable.

(A2) Assume that there exist a constant c1 and a nonnegative function #1 € L*(£2) (1/p + 1/q = 1y sych that for
a4, € Q each & € RH

lai(z. &) = e |~.‘,|;“_1 + Eq(x).
Proposition 3.1.

Assume that conditions ( A1), (A2) are satisfied. Then A4:1 — V™ is bounded and
hemicontinuous.

Proof.

By (A1) the function = — aj{x. u(x). Du(x)) is measurable for arbitrary u € V. Further, by (
A2)

f |a;(r, wlx), Dulx))|*de <
0

const |:f (e (er). Du(x))| P90 —I—f ey (x)? n‘.’r} < const [|lul|]- + 1]
9] £

and so Holder’s inequality implies

Equation 1.31. (3.2)

1/q
(A(w) r:=|SZ[ [ s Du)rfcf:r] T~
0

i=1

1/g |,
{f |ao (e, u, .fo_:]lrfd;ri| [/l Leccy < const [””—”Jn‘-; 9y 1} Ielly-
02 \ie)
By (3.2) it follows that “4(#) is a bounded linear operator on 1 and
JA@)lv- < const [[lull¥/* +1] .

thus A : ¥V — V¥ is bounded.

Now we show that A is hemicontinuous. Consider with fixed 1. #2. v € V7 the function

11
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A= {Alug +Aug).v), AER

For the operator A, given by (3.1) we have

T
{Alwr + Auz), v = Zf aj(r, w1 + Auo, Duy + ADua)Djede+
=17

f ag(r, g + Aug, Duy + ADusg)vdr.
Q

Assume that limi_.« Ai- = A for a sequence (Ax). Then by (A1) for a.a. = € ©2

lim a;(x. uy+Apua, Duy4ApDus) = aj(x. uy+Aus, Duy+ADus).  7=0.1.....

k—soc

further, by (A2)

Equation 1.32. (3.3)

laj(z, ur + Agua, Duy + A Dug)|? <

const[| (w1 + Apua, Dy + A Dua) [P + Ky (2)7] <

const[|uq|? + [ua|? + |Dug|P + | Dua|? + ki (x)7]

because (Ak) is bounded. Thus by Young’s inequality

lai(e. g + Mgz, Duy + ApDuo)Djv| <

const{|uq|? + |ug? + |Dua|P + |Dua|? + ki (x)7] + const | Djv|P
and similar inequality holds for

|anix, uy + Apuo, Duy + ApDug)v|.

Thus by (3.3) Lebesgue’s dominated convergence theorem implies
;'1_131:‘1: (Al + Apug), vy = {Aluy + Aug), v}

which completes the proof of Proposition 3.1. o

Now we formulate assumptions which, clearly, imply that operator A, defined by (3.1) is monotone and
coercive.

(A3) Assume that for a.a. = € €2, all §. §* € B
n

> lajle. ) — ajle, €9 — &) = 0.

=0

(A4) Assume that there exist a constant c2 > 0 and ¥2 € L (2) such that for a.a. = € 2, all £ € B**!

n

> ai(x.8)¢ = eal¢]” — kalx).

Remark 3.2.

Assumption (Ad4) implies that for any u € 1/,
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Equation 1.33. (3.4)
{A(u), u) = eaf|ull}. —f ka(x)dr.
3!

Now we formulate particular cases when (A3) and (A4) are fulfilled. First observe that (A1)—(A4) are satisfied
in the simple case:

Equation 1.34. (3.5)
ajlr, &) =oi(r. &), =01 ..n

where the Carathéodory function *; satisfies the following conditions for all 7, a.a. = € €2:

Equation 1.35. (3.6)

e . o €LY e . T eT=t] ]
& — oj(r. £;) is monotone nondecreasing,

Equation 1.36. (3.7)
AP < il &) < RGPt & ER

with some positive constants 51 52, Thus, by Theorem 2.14 there exists a solutionu € 1~ of equation (2.12) if
(3.5)-(3.7) hold.

Proposition 3.3.

Assume that the functions @i satisfy (A1), for a.e. = € Q, the functions & — a;{z. &) are
continuously differentiable and the matrix

Equation 1.37. (3.8)

taj(r. &)
&

) is positive semidefinite.

k=0

Then (A3) is fulfilled, thus A, defined by (3.1) is monotone.
Proof.

For arbitrary fixed = € 2, £&.&* € B™*! define function /i by

hj(m) = aj(x.&" +7(—¢&"). TER

1
hi(L) = hj(0) = A B (r)dr. Le.

1 n
da;
aj(r. &) —a;lr, &) = f . 0‘;:, (&% + 7(& — &N — & )dT,
1] SE
=0

hence by (3.8)
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Equation 1.38. (3.9)

> lajle, &) —ajla ENE — &) =

1 n
d“ * * * *
f S — ) (& — E(& — & )dr = 0.
0 :

O

Proposition 3.4.

Assume that conditions of Proposition 3.3 are fulfilled such that for a.e. .r € £2, each
- n+41
cnel

Equation 1.39. (3.10)

T T
Gﬁ i 2 o
> —Gs:_(-‘r- Emime = e3 3 _1&1P il

k=0 =0

with P = 2 and some positive constant z. Then

Equation 1.40. (3.11)

" T

D lajlr. &) —aj(w. & — &) = a5 -1
i=0 G=0

with some constant €3 = 0,

Proof.

By (3.9), (3.10)

Equation 1.41. (3.12)

> lajle, &) —ajla ENE — &) =

=0

1 n a
l."i_j
|3 GEE trle - e - (6 — ir 2
o . <k

d. k=0

1 n
| aXig+re -l - g
1]

=0

Now we show that there is a constant ¢4 > 0 (depending only on #) such that

Equation 1.42. (3.13)

1
[ 16 +ri6 - tar 2 alg - gt

Clearly, for SGi—& =0 (3.13) holds. For £ =<5 7 Y we have
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1 1
|16 +re—rar =16 -6 [ 16/ - ) + it

By using the notation d=¢&7 /(& - 5}‘), we have to show that there is a constant ¢4 > 0, not
depending on d such that

Equation 1.43. (3.14)
1
f |d + T|"_2ﬁ"." = ey
i

Inthecase 0 << —d < 1

Equation 1.44. (3.15)

1 —d 1
f |d + 7P 2dr = f (—d — )P 2dr + f (d+ 7)P2dr =
0 0 —d

(—d)P=t + (d + 1)P—! - 1
p—1 T2 (p—1)

where we used inequality
(a+0)" <27 e +0"). a.b>0,s>1

In the case when d = 0 or d < —1, d + 7 has the same sign for all 7 € [0 1], thus

Equation 1.45. (3.16)

L 1

p—1

1
|d + 7|7 2dr = |7|P~2dr =
0 0

Inequalities (3.15), (3.16) imply (3.14) and so we have shown (3.13). Consequently, from
(3.12) we obtain

T n
> lala &) —ajlw & — &) = eaca y_ 1§ — &I
i=0 G=0

which completes the proof of (3.11). o

From Proposition 3.4 immediately follows

Theorem 3.5.

Assume that the conditions of Proposition 3.4 and (A1), (A2) are fulfilled. Then operator A,
defined by (3.1) has the property such that for all u1. u2 € V

Equation 1.46. (3.17)
{A(u1) — Aluz), uy —u2) = csllug — uz||y-

with some positive constant .

Remark 3.6.
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If (3.17) is satisfied, the operator A : V" — V* is uniformly monotone. (See the Definition

21%1)) Fhusithé (saluitiert-af (2.12) depends continuously on , in this case for the solutions of
, we have

1 — wally < const]|Fy — [P,

Further, according to Remark 2.18, the sequence (n), constructed by Galerkin’s method,
converges to the solution « with respect to the norm of V.

In the case when A is defined by (3.1) and (3.17) holds, A is called strongly elliptic.

Remark 3.7.

Clearly, (3.17) implies that A is strictly monotone. Further, the assumptions of Theorem 3.5
imply that A : V¥ — 17 is coercive, too. Indeed,

A(u). u) = (A(u) — A0).w) + (A©0), u) > esllulf + |A©)] v ully
which implies that A is coercive since 7 = 1,

Example 3.8.

A typical example satisfying the conditions of Theorem 3.5 is

Mg+ euulP2, ¢ > 0is a constant, p> 2,

where £.p is the p-Laplacian operator , defined by

Equation 1.47. (3.18)

n
Hpu = Z D(|DulP~2Du).

In this case the functions @ are defined by

Equation 1.48. (3.19)

2, () =&ICP2 d=1,....n, aol. &) = ol |72
where we used the notation ¢ = (1. ... £n) Now we show that the inequality (3.10) holds in
this case. For¢ # 0, j = 1. ...
dajlx, ¢

0-:; ) (p— 2)&&I¢P if k # .
o
da;lr,
”Z)(:C) = (p—2)¢ ?|C|’_4+|C|’_° j=1.....n and
7
Jan(r, &n) a
Pl ki A — 1y|gq P2
D% (p— )]0
hence
= Ja;lr. ) o i
> E)frhm- = (=2 Y E&mimt
P =1
4k Z?h +elp — D)€" 07 =
i=1
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2

T

(= 2IC | S Gmi| 107200 + elp— Dl 2
i=1

i=1

n
const Z |£.j|“_2]‘jl?.

=0

Now consider operator A, defined by (3.1) with the functions (3.19). Clearly, (A1), (A2) are fulfilled and by
Theorem 3.5 we have (3.17).

Remark 3.9.
Consider the case V = W3 ™(2) for a bounded domain ©  ®". Then the norm in V" is

equivalent with the norm

lF'IIJJ

T
lu)" = Zf | D ju|Pdx
=174

(For the particular case P = 2 see, e.g. [67], for the general case see [1].) Therefore,
conditions of Theorem 3.5 are fulfilled for £, i.e. for an = 0.

Remark 3.10.

In Section 1 we have shown that if « is a solution of (2.12) with the operator (3.1),

V = Wi P(Q) then we may consider u as a weak solution of the equation (1.4) with
homogeneous Dirichlet boundary condition. The case of nonhomogeneous boundary condition
ulae =  can be reduced to a problem with 0 boundary condition for # = w — w.q if there exits
afunction w0 € W(2) with the property tolaa = .

Remark 3.11.

If u is a solution of (2.12) with the operator (3.1) and V" = W"”(2) then « can be considered
as a weak solution of (1.4) with the following homogeneous Neumann type boundary
condition :

Equation 1.49. (3.20)

n

Z aj(x, u, Dulrglan + hulag = g.

By using Gauss’s theorem it is easy to show that a function % € c? (E) satisfies the boundary
value problem (1.4), (3.20) (with sufficiently smooth functions @) if and only ifu is a solution
of (2.12) with the operator A (which is a modification of (3.1)):

T
{Alu), v} = Z [2 a;lx, u, Du)Djeds + [2 an(x, w, Du)vde + fq huvde,
i=1"¢ ‘ o

w.ve V

{£, t‘:::fft‘+f grda
02 el

and V' = WHP(€) Indeed, assuming that u € C*((2) satisfies (1.4), (3.20) (with sufficiently
smooth functions @), multiplying (1.4) by © € C*(£2) and integrating over €2, we obtain by
(3.20)
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Equation 1.50. (3.21)

{Fov) =f fv +f guda =
0 Ty

T
- Zf v |aj(x, u, Du)|dz + f vag(x, w, Du)dr + f gurda =
s 2

L el

T n
- vy aj(r, u, Du)vjde + f aj(r,u, Du)Dje + aple, w, Due | det
[ S tan e s [ (S50 0o

i=1 4=1

f grde = {A(u), v}
el

Further, when € C*(2) satisfies A(#) = F first apply

Equation 1.51. (3.22)
{A(u), vy = (£ v}

to © € Ci (22). Then from (3.21) we obtain

f frdr = f - Z Djlaj(x, u, Du)] + ao(x, u, Du) 3 vdr
o 0 =

which implies (1.4) since C () is dense in L*(£2), Then apply (3.22) to * € C'(£2), by using
(1.4), (3.21) we find

T
f grdo = f v E (T, Dfr.):{,;ffrr+f huvdo
a0 Cls ils)

which implies (3.20) since the restrictions of functions © € C"'(2) are dense in L7 (9%2),

3.1. Problems

1.

Prove that for the functions (3.5), satisfying (3.6), (3.7), the assumptions (A1)—(A4) are fulfilled.

Let cv. 7 : £ — & pe measurable functions satisfying

e o) <en. e <fr) < re

with some positive constants r1. r2. By using Example 3.8, show that

ajlz, () = n-(:r)f,_j|ﬁ'|"_2. i=l....n, (=(&....5&)eR", re,
ap(r, () = B(x)&|&|P2, &HeR =z

satisfy the assumptions of Theorem 3.5.

Define the weak solution of the Dirichlet problem

18
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n
=% Dylaj(z o, Dw)]+ aglz, u, Du) = f
i=1

”-|e!£2 = ¥

as a function v € W'(Q) satisfying
n
{Alu), v} = Zf ajlx, w, Du)Djv —i—f an(x, w, Du)v = {F, v}
oo 0

for all v € Wi (), ulan = »

where (F2v) = [ fv and u|ac denotes the trace of % € W(€2) on the boundary 2.

Show that (for “sufficiently good”) functions @i, a function 4 € C*(2) s a classical solution of the above

Dirichlet problem if and only if it is a weak solution.

Prove that if the assumptions of Theorem 3.5 are fulfilled and there exists “o € W' () such that
¥ ~l.p W . . . .. .
uolae = @ then for each & € [Wi(€2)]" there exists a unique weak solution of the Dirichlet problem (in

Problem 3) with nonhomogeneous boundary condition. (See Remark 3.10.)

4. 4 Application of pseudomonotone operators

Here we shall formulate more general conditions than (A3) (they are natural generalizations of ellipticity in the
linear case) which will imply that the operator (3.1) is pseudomonotone. In the proof we shall apply the

following two theorems.

Theorem 4.1.

Let ©2 C " be a bounded domain with a sufficiently smooth boundary, 1 << p << o¢, Then

WP(9) js compactly imbedded into L7 (€2),

The exact formulation on smoothness of ¢} and the proof of the above theorem can be found in [1].

Remark 4.2.

Later we shall apply the following statements, too. Let {2 — E" be a bounded domain with

sufficiently smooth boundary. Then W'7(©) is compactly imbedded into W' ™"

arbitrary 0 <& < 1. Further, the trace operator W' "7(€2) — LP(99) is bounded if

0<d<1—-1/p

Theorem 4.3.

(Vitali’s theorem) Let M C " be a Lebesgue measurable set. Assume that the functions
St M — T gre Lebesgue integrable, further, for a.a. x € M, limi—= fi(r) exists and is
finite. The functions f& are equiintegrable in the following sense: for arbitrary = > 0 there
existd = 0and § < M of finite measure such that for all & € I¥

f | filx)|de < & if AM(H) < 8§ and f | fr-lx)|do < £.
H =

A

'

Then

lim fu(x)dr =f flx)der.
M M

E—oc
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Remark 4.4.

It is easy to show that if (f&) — f in L' (M) then the functions f« are equiintegrable. Further,
by Hélder’s inequality one obtains: if (|7x|”) is equiintegrable and (/+Jis bounded in L“(M) (
1 < p < o0) then (grh1) is egiintegrable.

First we formulate simple cases when Theorems 4.1 and 4.3 imply that operator (3.1) is pseudomonotone.

Theorem 4.5.

Assume that €2 C ™ is a bounded domain, &% is sufficiently smooth and functions i,
satisfying (A1), (A2) have the particular form

ajlr, &) =a;(x. (), j=1,...nwhere{ = (&1..... &),

and instead of assumption (A3) we assume

Equation 1.52. (4.1)

3 [t ¢) = sl (& — &) = 0.

i=1

Then the (bounded) operator A (defined by (3.1)) is pseudomonotone.

Proof.

Assume that

Equation 1.53. (4.2)

(ug) — u weakly in V7 and lmsup{A(ug). vp—u} =0
[ -

Since () is bounded in W"*(€2), by Theorem 4.1 there is a subsequence (1 ) of(t&) which
converges to  with respect to the norm of £”(€2) and a.e. in2.

Define operator B by

n

{B(u),v)= Zf?_,;(:r, Du)Djedr —i—f [P 2 edi.

i=1 L

Then (4.1) implies that B : V¥ — 17 is monotone and by (A1), (A2) B is hemicontinuous and
bounded. Consequently, from Proposition 2.5 it follows that 17 is pseudomonotone. Further,

Equation 1.54. (4.3)
{Bu),v) = {A(u), v} + f [rr.|w.|"_2 — aplx, u)|vdr.
0

Since

lim [k, — ullLe(a) =0
I—r S

and by (A2)
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g, g, |72 = ol g )| Lo is bounded,

Hoélder’s inequality implies

Equation 1.55. (4.4)

lim f [thiey [t |[P~2 = a (i, g, )] (tge, — w)edir = 0.
0

—OC

Thus we obtain from (4.2)

Equation 1.56. (4.5)
limsup{B (g, ), ug, —up < 0.

l—poc

Since 1 is pseudomonotone, (4.2), (4.5) imply

Equation 1.57. (4.6)

FE\-IE: (B (), vy, —uh =0,

Equation 1.58. (4.7)
(B (g, )) = Bilu) weakly in V7",

By (4.3), (4.4), (4.6)

Equation 1.59. (4.8)

!]E'IJC{"{(”';'T)‘ g, — ) = 0.

Finally, (tx,) = u ae., so by (A1)

Uiy [tk P72 — o (i, g, ) — u|u|P2 — aolr, u) ace. in €.

By using Holder’s inequality, one shows that for a fixed © € 17, the sequence of functions
[utge g |72 — o (., g )]

is equiintegrable (the £7(£2) norm of the term in brackets is bounded). Thus by Theorem 4.3

lim f [ty |10y |P~2 — g (i, ug )| vde = f [u[u]P~2 — do (x, u)]vd.
0 £

=

and so from (4.7) we obtain that

Equation 1.60. (4.9)
(Alug, ) — Alu) weakly in V7.

(4.8), (4.9) hold for the sequence (), too. Because, assuming that it is not true, by using
Cantor’s trick, we get a contradiction. O
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Nowyve formulate other conditions which imply that operator A of the form (3.1) is pseudomonotone. Instead
of () assume

(A3) There exists a constant #2 = 0 such that for a.a. = € €, all 7 € E (. (* € "

> lajlw. . Q) — ajle . COH(E — &) = éal¢— ¢ P
i=1

Theorem 4.6.

Assume that €2 © B is a bounded domain, 8 is sufficiently smooth and (A1), (42), (A3)
hold. Then operator A of the form (3.1) is bounded and pseudomonotone.

Proof.

According to Proposition 3.14 is bounded. Now we show that A is pseudomonotone. Assume
that

Equation 1.61. (4.10)

() = u weakly in V' and limsup{A(ug), ug —u} < 0.
F— o

Since W'P(Q) is compactly imbedded into L”(£2) (for bounded € with sufficiently smooth
boundary, see Theorem 4.1), there is a subsequence of (%), again denoted by (t&), such that

Equation 1.62. (4.11)
(ug) — win LP(€2) and a.e. in O

Since (2juk) is bounded in £7(£2), we may assume (on the subsequence) that

Equation 1.63. (4.12)
(Djug) = Dju wealdy in LP(€2), j7=1,....n.

Further,

Equation 1.64. (4.13)

{Alug), ug —u) = f an(x, g, Dug)(uy — w)do+
]

Zf [a(, ug, Dug) — a;(x, wg, Du)](Djug — Dju)dc+
P e

Zf a;(r, gy, Du)( Dy — Dju)der.
=171

The first term on the right-hand side of (4.13) tends to 0 by (4.11) and Hoélder’s inequality,
because the multipliers of (t+ — ) are bounded in £“(£2) (by (A2)). Further, the third term on
the right-hand side converges to 0, too, by (4.12) and because (4.11), (A1), (A2) and Vitali’s
theorem (Theorem 4.3) imply that

ajlr, ug, Du) — aj(x, u, Du) in L9(€2).
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Consequently, (4.10), (4.13) imply

Equation 1.65. (4.14)

E—oc

n
lim H111JZf [a(, up. Dug) — aj(x, up, D)) (Djur — Dju)ds < 0.
= Ja

From (A3), (4.14) we obtain

Equation 1.66. (4.15)

E—oc

lim f | Dty — Du|Pdr =0
0

and (for a subsequence)

Equation 1.67. (4.16)

(Dug) — Du ae in Q.

Therefore, by (A1), (A2), (4.11), (4.15), (4.16) and Vitali’s theorem (Theorem 4.3)
a;lz. wp, Dug) = a;(z.w, Du) in LY(Q). =01, ....n.

Thus by Holder’s inequality

Equation 1.68. (4.17)
(Alug)) = Alu) weakly in V™.

Finally, from (4.11), (4.15) and (A2) one gets

Equation 1.69. (4.18)

lim {A(ug), ug —u) = 0.
k—oc

Since (4.17), (4.18) hold for a subsequence of (t# ), by using Cantor’s trick, we obtain (4.17),
(4.18) for the original sequence. O

Remark 4.7.

According to the proof of the above theorem operator A belongs to the class (S)+ and it is
demicontinuous.

4.1. Browder’s theorem

The following more general theorem is due to F. Browder (see [14]). Instead of (A3), (A4) we assume that

(A3) foraa. x € Q allnE R, (. e B" ( # (7

> laile, . Q) — ajle.a, (& — €)= 0
i=1
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where we used the notations 7 = &0, ¢ = (&1, .. &),

Remark 4.8.
In the linear case assumption (A3") means ellipticity.

(A4’) There exist a constant ¢z > 0 and k2 € L' (€2) such that

Z ajlx, 1, 0)E = ea|C|” — kalx).
=0

Theorem 4.9.

Assume (A1), (A2), (A3, (A4"). Then the (bounded) operator A, defined by (3.1) with an
arbitrary (possibly unbounded) domain £2 < ", is pseudomonotone.

Proof.

Assume (4.2), i.e.

Equation 1.70. (4.19)

(wr) — u weakly in V' and limsup{A(ug). up — u) < 0.
f—p oo

We have to show that

Equation 1.71. (4.20)

.r.lim {Alwg), up—u) =0 and (Afug)) — Alu) wealdy in V™.
T

We shall show that (4.20) holds for a suitable subsequence of (tx), by Cantor’s trick this will
imply (4.20) for (4, too.

Assume that (2 ] is a sequence of bounded domains with sufficiently smooth boundary <,
such that m C g1 and £ = U —18n, By Theorem 4.1 for arbitrary fixed m there is a
subsequence of (&) which is convergent in L7 (£2m ) and so a subsequence of this subsequence
is a.e. convergent to u in 2. By using a “diagonal process” one obtains a subsequence of (1)
which converges to « a.e. in 2. For simplicity, we shall denote this subsequence also by (tix),
so we have

Equation 1.72. (4.21)
(ug) — uw ae in Q.

The main part of the proof of our theorem is showing

Equation 1.73. (4.22)
(Dug) — Du ae. in

Set

Equation 1.74. (4.23)
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prlr) = Z[EU(.’F. g, Dug) — aj(e, u, Du)|(Djue — Dju)+

i=1
[an(x, e, Dug) — apla, w, Du)| (ug — u),

then
{Alug) — Alu), up — u) = f pi(x)dr
]

and so by (4.19)

Equation 1.75. (4.24)

111115111}] pr (x)dr < 0.
0

=

Due to (4.23) we have

Equation 1.76. (4.25)

T

prlr) = Z (o, g, Dug)Djug +aole, wge, Dug)ug — gi(T)
i=1

where

Equation 1.77. (4.26)

gilx) = Z a;(x, u, Du)(Djur — Dju)+ apl(r, v, Du){ug —u)| +

i=1

T

ZEJJ‘(.‘!‘. ey D) D+ ap(r, we, Dug)u

i=1

By (A2)

Equation 1.78. (4.27)
gk ()] < eallulP~ + [DulP~ + k()] [Jug] + [Dug| + ] + [Dul]+
s [url”t A+ [Dug P+ K ()] ] + | Dul],

thus Holder’s inequality implies that the sequence (9 ) is equiintegrable. (See Remark 4.4.)
Further, by Young’s inequality from (4.27) we obtain that for arbitrary = = 0 there exist a
constant (=) and a function ¥4 € L* (£2) such that

Equation 1.79. (4.28)
lge(x)] < 2| Dugl? + (=) |ug]P + [ul” + |Dul? + ka(x)].

Choosing sufficiently small = = 0, one obtains from (A4’), (4.25), (4.28)
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Equation 1.80. (4.29)

pre(x) 2 ca|Dug|” — kalz) — |grlx)| 2

F1Dul? = collusl? + [ul” + | Dul” + ks(a)

with some constant s and ks € L' (€2), Let

Py (#) = max{py(w), 0}, pp () = — min{p (x). 0}.
then by (4.29)

0 < py (x) < ka () + |gele)]

where the sequence on the right hand side is equiintegrable, hence the sequence

Equation 1.81. (4.30)
(Pp Jrem is equiintegrable.

Now we show that (75, ) converges to 0 a.e. in 2. Indeed, Px can be written in the form

Equation 1.82. (4.31)
pilx) = qe(x) + re(x) + splx)

where

T

g () = Z[fij(.‘!‘. g, Dug) — aj(x, we, Du)](Djug — Dyu),
i=1

ri(r) = Z[EU(.’F. g, Du)— ajlx, u, Du)](Dju, — Dju),
i=1

si(r) = |ao(r, wg, Dug) — ag(x, w. Du)] (g — u).

Denote by X+ the characteristic function of the set 17 : P;. () = 0} then

Equation 1.83. (4.32)

—Pr = XEQ: T XETE T+ XESE-

By (4.29)

%2|D”""|JJ < eo[|ue]” + |ul” 4+ |Dul” + ks(x)] if pr(x) <0,

hence by (4.21) the sequence (X D) is bounded for a.a. fixed . Thus by (4.21), (A2)

(xeri) — 0 ae and (yrsi) — 0 a.e.

Since Xxdx = Uae,, it follows from (4.32)

Equation 1.84. (4.33)

(P ) — 0 ae
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Thus by (4.30) and Vitali’s theorem

Equation 1.85. (4.34)

lim fp;ﬁ‘:r:{},
k—oc o

Since 0 < 1y = pr + Py, from (4.24), (4.34) we obtain

Equation 1.86. (4.35)

lilIlfpf_’ﬁ‘:r:U.
kE—oc 7

From (4.34), (4.35) it follows [111k—sxc Jorr =0and so by (4.23) we obtain the first part of
(4.20):

{Alug ), up — uy = {Alug) — Alu), ve — w4+ {Alu), up — u) =
f i (m)dr + {Alu), ug —u) — 0.
0

By (4.35)
(p;'] — 0 a.e., for a subsequence

(again denoted by U’? ), for simplicity). Thus (4.33) implies that

Equation 1.87. (4.36)

(pr) — 0 ae.
Hence (4.29) implies that for a.a. fixed = € £2 the sequence (Dux () ) is bounded.

Consider such a fixed ir € £2. Assuming that (4.22) is not valid, we have a subsequence of
(Durlz)) | (again denoted by (Duxr(x)) for simplicity), which converges to some
" # (Du)(x), Since

(up(x)) = ulx), (re(z)) =0, (sp(x)) =0,

we obtain that

T

0= Alﬂxi prlT) = Z[fij(.‘!‘. ulx), ") — ajlr. ulz), Dulx)|(F — Du(r)).

i=1

Thus by (A37) we obtain ¢* = Du(x) which contradicts to ¢* 7 (2u)(x). So we have shown
(4.22).

Hence we obtain the second part of (4.20), by using Vitali’s theorem: for arbitrary fixed v € V'

{Alug ), vy = Zf (. gy, Dug)Djedr + f ap(x, wi, Dug)vds —
j=174

0

Zf a;i(r, u, Du)Djedr +f ag(r, w, Du)vdr
mila o
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because the sequence of integrands ig equiintegrable by (.A2) and Holder’s inequality, further,
the a.e. convergence follows from (), (4.21), (4.22). o

Remark 4.10.

According to the proof of the above theorem, A belongs to the class (5)+ if Q2 is bounded and
it is demicontinuous.

Remark 4.11.

If instead of (A4") we assume (A4), we obtain that A is coercive, too and we have existence of

- ~l.p
solutions for arbitrary #* € V*. In the particular case when € is bounded and V" = W5 ™(€2), (
A4”) implies that A is coercive (see Remark 3.9).

Remark 4.12.
F.E. Browder proved in [14] the following generalization of Theorem 4.9. Let V" C W™ ()
be a closed linear subspace (m = 1,1 <p< o0, & C B" arbitrary, possibly unbounded

domain) where W "(£2) denotes the Sobolev space of (real valued) measurable functions
u : {2 — I with the norm

1ip
||”'||1*1'J-'?-a-[:t_2} = |: z f |_D‘"’u.|"ff:r:| )

| ex] <am 0

D* = DY"..Dy» Dj = 8/0x;_ (For the detailed investigation of Sobolev spaces see, e.g.,
[1].) Define operator A : V" — V"* by the formula

Equation 1.88. (4.37)

{Alu). v} = Z f (T i, oo D, ) D vd
3!

|ex| <

where |3l =m and functions a. (depending on a multiindex « ) satisfy the natural
generalizations of (A1), (A2), (A3"), (A4°). Then A is pseudomonotone.

A similar generalization of Theorem 4.6 can be formulated and proved for higher order
nonlinear elliptic equations.

The proofs of the generalizations are similar to that of Theorems 4.9, 4.6, respectively.
Example 4.13.
A simple example satisfying the assumptions of Theorem 4.4, where A is coercive is:
—Spu +aplr,u, Du) = F

where the function au satisfies (A1), (A42) and

Equation 1.89. (4.38)
ap(x. £)én = ea|éol”

with some constant c2 > 0. If €2 is bounded and V = W5 (), instead of (4.38) it is sufficient
to assume ao(r. £)én = 0 (see Remark 3.9).

4.2. Nonlinear elliptic functional equations
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Now we apply the theory of pseudomonotone operators te’fianlinear elliptic functional equatieng withcneplingat

and “non-local” third boundary conditions . Let be a closed linear subspace (
a bounded domain with sufficiently smooth boundary).

Definition 4.14.

Define operator A by

Equation 1.90. (4.39)

r

(Alu). v} = / Zu_}{.r. u(x), Du(r):u)Djv(r) + aplz, ulx), Du(z):u)r(x)| dr+

0 5=

f (e wjvde,  w,v e V.
a0

Assume that the following conditions are fulfilled.

(A1*) The functions @ : £ % BV 5 R (7 = 0. 1. ....n) satisfy the Carathéodory conditions for arbitrary

fixed u € V and i : 9€2 x V' — & is measurable for each fixed u € V",

(A2*) There exist bounded (nonlinear) operators g1 : V' — B* and k1 : V' — L*(£2) such that
laj(x, g, CGu)| < gr(w)[1+ [gP~t+ [P~ + [ko(u)](z). §=0,1....n

forae. = €, each(n- () € R 4 =y,

(A3*) The inequality

Z[ﬁ_;(:r. 0, Cu)—aj(r, g, Cru)|(& — &)z ga(u)|¢ — 7

i=1

holds where

Equation 1.91. (4.40)
g2(u) Z ¢ [L+ Julv] ™"
and the constants <. " satisfy ¢* = 0,0 = ¢" <p— 1

(A4*) The inequality

Equation 1.92. (4.41)

n

> ajlen. Gu) = ga(uw)[1+ [nl? + 1C7) — [ka(u) ()

i=1

holds where #2(i) and f (2 1) satisfy with some positive e < p— e* A1 <p—1—o*

Equation 1.93. (4.42)

k2 (w)]l Lty < comst [1+ [Jullv]”. uweV,
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Equation 1.94. (4.43)

| (x: u)l|gaae) < const 1+ ||fr.|||.--])‘I . ueW

(In the case V = W (2)h is considered to be identically 0.)

(A5*) There exists & > 0 satisfying # < 1 — 1/p such that if (u&) — u weakly in V" and strongly in W' ~"7(
(") = nin®, (") = Cink" thenforaa. v € 2, =0, 1,....7

lim aj(eq*, Frug) = ajlz.n. Gu)
k—oo ’

for a subsequence and for a.a. « < &

lim A ug) = hizu)

F— o

for a suitable subsequence.

Theorem 4.15.

Assume (A1*) — (A5%). Then A: V' — V" is bounded, pseudomonotone and coercive. Thus
for any F € V*there exists u € V" satisfying A{u) = £

Proof.

Clearly, (A1*), (A2*) and (4.43) imply that A is bounded, because the trace operator
WTP(Q) — L7(09) js bounded by &+ 1/p < 1 (see [1]) and so by Holder’s inequality

Equation 1.95. (4.44)

1/a 1/p
| f(r w)e(r)de| < |:f | (e u)|”’ffrf} [f |t‘(:r)|"ﬁ‘fr] <
a0 a0 a0

const 1+ [luflv | [[ellwi-spiq) < comstlL+ [ulv ¥ lellwpeq)-
Assumption (A4*) implies that A is coercive because by (4.44)
(A(uwr). i) 2 € [+ Jul v]7~" = const[1 + [luelv] "~
const[1+ ||H.;,-||l|-'];‘|+1 — e

asluellvy = ocsincep—o* > o, p—c* > M +1 p—c* = 1

Now we show (similarly to the proof of Theorem 4.6) that A is pseudomonotone. Assume that

Equation 1.96. (4.45)

(wr) — u weakly in V' and limsup{A(ug). up — u) < 0.
f—p oo

Since W'7(2) is compactly imbedded into W' ~""(€2) (for bounded © with sufficiently

smooth boundary, see [1]), there is a subsequence of (ux), again denoted by (), for
simplicity, such that

Equation 1.97. (4.46)

(1) — u in WI=P(Q) and a.c. in Q

(

),
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and by (A5%)

Equation 1.98. (4.47)
f(r;ug) — hiz:u) for a.e. e 0L

Since (Djtx) is bounded in £7(£2), we may assume (on the subsequence) that

Equation 1.99. (4.48)
(Djug) = Dju wealdy in LP(€2), j7=1,....n.

Further,

Equation 1.100. (4.49)

{Alug), up —u) = f ag (i, g, Dugs we) (e — u)dr+
0

Zf [a(, wg, D) — aj(e, wgp, Dugug)] (Dyug — Dyu)de+

n

Zf ajlw, g, Dusug)(Djug — Dju)dr + f iz wg)(ug — u)do.
02 £

s 10

The first and the fourth terms on the right hand side of (4.49) tend to 0 by (4.46) and Holder’s
inequality, because the multipliers of (& — ) are bounded in £ {€2) and L (7€2), respectively
(by (A2*) and (4.43)), and the trace operator W' ~"7(€2) — L?(0€) s continuous. Further, the
third term on the right hand side converges to 0, too, by (4.48) because (4.45), (4.46), (A1%), (

A2%), (A5*) and Vitali’s theorem (Theorem 4.3) imply that
ajlw, wp, Dusug) — aj(o, v, Duiu) in L9(€).

Consequently, (4.45), (4.49) imply

Equation 1.101. (4.50)

n
lim :-«'111}2] [, wg, Dugz ug) — aj(, wp Duiug)](Djue — Diu)ds < 0.
=174

E—oc

Since (&) is bounded in V", from (A3*), (4.50) we obtain

Equation 1.102. (4.51)

lim f | Dty — Du|Pdr =0
0

E—oc

and (for a subsequence)

Equation 1.103. (4.52)

(Dug) — Du ae. in
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Therefore, by (A1%), (A2%), (A5%), (4.45), (4.46), (4.52) and Vitali’s theorem (Theorem 4.3)
aj(r, ug, Dugug) — ajlz,u, Duzu) in 29(Q), 7 =0.1,...n.

Thus by Holder’s inequality, (4.44), (4.47) and Vitali’s theorem

Equation 1.104. (4.53)
(Alur)) = Alu) wealdy in V7.

Finally, from (4.44), (4.46), (4.51) and (A2*) one gets

Equation 1.105. (4.54)

lim {A{ug), up —uy = 0.
E—oc

Since (4.53), (4.54) hold for a subsequence of (&), by using Cantor’s trick, we obtain (4.53),
(4.54) for the original sequence.

So we have proved that A is bounded, pseudomonotone and coercive, thus Theorem 2.12
implies Theorem 4.15. o

Remark 4.16.

The solution = of the equation “A(#) = #" with operator (4.39) can be considered as weak
solution of the equation

Equation 1.106. (4.55)

T

- Z Djla;lx, u, Duzu)| + ag(xz, w, Dusu) = f

i=1

with the “non-local” third boundary condition

Equation 1.107. (4.56)
ZEJJ‘(.‘!‘. w, Duzujpy + h(ziu) = 0 on J€

i=1

Indeed, by using Gauss’s theorem, it is easy to show that a function # € C*(22) satisfies the
boundary value problem (4.55), (4.56) (with sufficiently smooth @ (:r. . D u) if and only if
wis a solution of A(u) = F with operator (4.39), (/1) = [q frdr gngV = WP(Q) (See
Remark 3.11.)

By using the Rellich-Kondrashov compact imbedding theorem, one is able to prove an existence theorem on
equation Alu) = F for the operator (4.39) with a more general growth condition than (.A2*). The Rellich-
Kondrashov theorem with respect to the space "' 7(<2) says (see, e.g., [1]):

Theorem 4.17.

Let £2 C IE" be a bounded domain with “sufficiently good” boundary (2 has the “cone
property”, see [1]);

np

1<pm < ifp<mn, 1<p arbitrary if p =n,

n—p
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pL=0o¢ifp>mn
Then W**(£2) is compactly imbedded into £** (€2),
Now instead of (A2*) assume
(A2") There exist bounded (nonlinear) operators g1 : V' — & and k1 : V" — L7(2) such that for j = 1. ....m
Jaj(w.m, Gu) < gu(w)[1+ [/ + [P~ + [ka(w)] () and
|ao(e. 1, G u)| < ga(w)[1+ [P/ 4¢P/ + [k ()] ()
where 1 is defined in Theorem 4.17, 1/p1 + 1/a1 = Land k1 : V = L% (Q) is a bounded operator.

Theorem 4.18.

Assume (A1*), (A2"), (A3")-(A5%). Then the operator, defined by (4.39) is bounded,
pseudomonotone and coercive. Thus for any ' € V* there exists u € V satisfying (1) = £,

The proof is similar to that of Theorem 4.15. Applying Hélder’s inequality also in L7 (€2), L7 (£2), we obtain by
Theorem 4.17 that A : V" — V"™ is bounded. Further, one proves that the first and third terms on the right hand

side of (4.49) converge to 0, by using Holder’s inequality also in ' (€2), L (£2) and Vitali’s theorem. Finally,
proving (4.53), we apply Vitali’s theorem and Holder’s inequality also in L™ (€2), L7 (€2),

Example 4.19.

Now we formulate examples satisfying (A1*)-(A5*) (i.e. assumptions of Theorem 4.15). Set
aj(w.n. Gu) = b, [H(@)] ()& (P2 5 =1 m,

aul,n, G u) = bola, [Ho(w)](x))n|n["~2 + bo (. [Fo(u)] ()0 (x. 7. C),

hiziu) = Bz, [G(u)](x))

where b. bo. bu. co are Carathéodory functions and they satisfy

(] )]

bix. &) = W bo(x, 8) = W

with some constants ¢z = 0,0 < o* < p—1

bo(r.8) < 1+]6)P17¢ with0< p* < p—1

lao(z, 7, Q)| e[+ pl2+ %], 0< 4 o +d< o,
|3(x, 8) <er[L+]8)M], 0< A <p—1—a".

Finally,

H.Hy: W MR — C(),  Eo: Wl "i"’{il} — LP()), G LP(OQ) — L7 (0%
are linear continuous operators. Clearly, assumptions (A1*) — (A43%), (A5*) are fulfilled, we
have to show only the estimate (A2*) for the second term in @ole. 7. C: u), By Young’s
inequality

|@m(:r. [Fo(w)](x)én (. 0. O] < [14 |[Fo(w)|P1 72 et [1+ |92 + [€|%] <

const[1+ |n|@ +|¢|€]Pr 4 const[1 4 | EFy(u)|P—1-e o]

where
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—1 " — 1
L =1, q = ! _

- = .
m m—1 p—1—5

Consequently, we obtain for this term (A2*) with
k1 (1) = const[1 + | Fy(u)|P—t-e o]

since by Holder’s inequality we have for this term

f [E1(u)]? = oon.stf (14 |Fo(u)|P-t-etma) <
Q £

wip
const [1 + f |1*'[]l:'”-:l|p} < comst [1 + |Ju|{/]
]

where

1—1—0p
p=1(p—1—p")qqg= %ﬂfi P
p—1—2p

Now we prove that (A4*) holds. Clearly, for our example we have in (4.40)

const const

ga (1) = min > const[1 + ||ulv]".
a2 {1+||H<~)||° T THo T, }— 1+ Irulv]

Further, by Young’s inequality

|bo (. [Fo(w)](x)do (z. 5. On| < [14 |Fo(u)|P~ 12 Jconst[1 + || &+t +|¢|&+] <
P . . 1y

Ll K] L+ )]

for any = = 0 (because £ + 1 < p— ") where

p—a’ jo! p—a”
HW=——"72=1 q = =
P n

m—1 p—a"—p—1

and C(£) is a constant, depending on £. Choosing sufficiently small = == 0, we obtain (A4*)
with

[ra(u)] () = C(e)[1 + |Fo(u)|P—1—e)m]

since

||,I|'.2(-!f_)||,‘| (EE) = (_‘,ongtf [1 + |1-<'[](-!f_)|(p—1—ﬂ-:““] —
0
const [ 14 o) =) < const [1 + a5y ] <
0

const [1 -+ |l | f, q,s,m)} < const[1 + |Julv]”

with @ = (7 — 7" JA where

No_PZlzet
p—1—0o*—3g

because ™" + 2 < 2 and thus (P — 7" )JA < p— a*,

If functions - b are between two positive constants then, clearly, (A1*) — (A5*) are fulfilled
when
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H. Hy: W' (Q) — LP(Q)

are continuous linear operators (as #1). So in this case [H (u)](x), [Ho(u)](x) (and [Fo(u)] (x))
may have also e.g. the forms

pfa
f d(x, £)u(E)ds where f |: |d(.’r,£]|”fa‘.ﬁ] dir < ¢
0 02 2

or u(x(x)) where x- x ' : & —

-

Y are continuously differentiable.

Finally,

f [A(e:w)|%de < f |3 (. [Glu)](x))|"de < con.-:tf 1+ |G(u)|M9)de <
a0 ' a0

a1y s

Aralp
const |:f 1+ |G(H.)|J‘:]ff0'i| < const [1 + ||”'||i:-r.fatz‘.] < const [1 + ||u||?' "}
el s

which implies (4.43).

4.3. Problems

1.

Prove Remark 4.7.

Show that the Example 4.13 satisfies the assumptions of Theorem 4.6.

Prove Theorem 4.18.

Assume that the functions @; satisfy the conditions (A1), (42), (A3), (A4) and there exists to € W7(€2)

, Alp * . . -
such that “olaa = . Prove that then for each £” € [W5 ™ (€2)]* there exists a weak solution of the Dirichlet
problem with nonhomogeneous boundary condition, considered in Problem 3 in Section 3. (See Remark
3.10)

Let V" be a closed linear subspace of W™ 7(£2) (m = 1.1 < p < o) and consider the operator (4.37). Denote
by NV the number of multiindices 7 = (1. - - - fn] satisfying 18] = 225217 =™ Assume that the functions
a0 2 x BY — I satisfy the Carathéodory conditions, i.e.

T agy(r. &) is measurable for each £ € BV,

& an(r, &) is continuous for a.a. x € (1

Further, there exist a constant c1 > 0 and a function k1 € L(£2) such that
laa(r. &) < e1€]P ™ +Ei(x). £€RY. an ze€Q

Prove that then the operator (4.37) is bounded.
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Consider the3operator (487 satisfying the assumptions of Problem 5. Dgnote by A4 the number of
multiindices  satisfying . Assume that there exists a positive constant  such that

Equation 1.108. (4.57)
Z lan(r. . () — anlz, n. (N (Co — ) = 2| — P

| ex] =am

foraa = € all (. ¢* € RY n € BY =" By ysing the arguments of the proof of Theorem 4.6, prove that
the bounded operator A : 17 — 17* is pseudomonotone.

By using Proposition 3.4 formulate conditions, which imply the inequality (4.57).

Formulate assumptions on functions @« which imply that the operator A defined by (4.37) is coercive. Show
that the solution of A(u) = ¥ can be considered as a weak solution of the equation

Z (-1 DY [an(r. u.....D%. ... )] = fin Q
| ex] <am

.

with homogeneous Dirichlet conditions on @€ if V = Wy
i1 = W ()

(£2) and with homogeneous Neumann conditions

Let 1~ be a closed linear subspace of W™ (£2) (m = 1. p = 2) and define the operator A : V' — V* by
{Alu), v} = _ f (D“w)|D"u|P 2D vdr, u.veV.
|.-;-:;” @

Prove that A is bounded, demicontinuous, uniformly monotone, satisfies (3.17) and, consequently, A is
coercive.

10.

m.p

Consider the operator (4.37) with » = 2,V = W () By using the notations of Problem 5, assume that
the functions a« have the form

reQ feRYiflal=m

an(r. &) = EuléalP 72

and for || < m the functions a. satisfy the assumptions of Problem 5, further,
(T, &)n =0, T€0Q, &€ RV,

By using the fact that in Wo ™ (€2)

Lip

= | 3 [ 10mar
| - ¥

x| =

is equivalent to the original norm, show that A4 : ¥ — V" is bounded, pseudomonotone and coercive.

5. 5 Nonlinear elliptic variational inequalities

5.1. Preliminaries
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In order to explain the importance of elliptic variational inequalities , first consider the weak solutien /@f the
linear elliptic equatien! (1) with homogeneous Dirichlet boundary condition, i.e. a function
satisfying for all

Equation 1.109. (5.1)

{Au, v} = Z ff!_,i.!.-(.D.!.-H.:](_D_J;t‘:]ff.’!'+f f-.fr.t‘d.'r=f fode = {F,v).
Pyt Q Q

It is well-known (see, e.g., [67]) that if ¢ = 0, ajk = axr; € L™ (£2) satisfy the uniform ellipticity condition then
the unique solution # € Hg (2) of (5.1) is the unique function » = u* € Hg(£2) which minimizes the quadratic
functional

Equation 1.110. (5.2)

Elu) = {Au, u) — 2{F, u) =

n
Z fﬁ_;,r,-(D;,-rr.](D_; rr.]d.'r—l—f f-.u.gd.'r—ﬂf Sfudr.
Prfl Q Q

(Here A : V — V* s a linear operator, V = H{(2))

Similarly, the weak solution of the Neumann problem with homogeneous boundary condition, i.e. the solution
u € H'(Q) of (5.1) for all v € H' (), s the unique v = v* € H'(2) where £ attains its minimum in H ' (£2),

By using similar arguments as in [67], one can show the following generalization of the above statements.

Theorem 5.1.

Let i be a closed convex subset of the real Hilbert space V7, A: 1V — 17" be a bounded,
strictly positive selfadjoint linear operator and £' £ V7*. Then the quadratic functional

Equation 1.111. (5.3)
Elu) = {Au, u)y — 2{F, u}

attains its minimum in K at uw = u* € K where u = u* is the unique solution of the
“variational inequality”

Equation 1.112. (5.4)

{Au, v —u) = (F.v—u) for all v e K.
Proof.

The functional £ is bounded from below:

v 2 .
[ e 3

2
]

%

E(w) 2 Glul} = 2|Fv- lullv = [“ulluua-- -

1112

2
i

Let (1) be a sequence such that
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Equation 1.113. (5.5)
w; € K. lim F(u;)=inf £ = d.
’ J—oc ’ K
As in [67], one can show that (ij) is a Cauchy sequence in V. Indeed, by using the

parallelogram equality and (5.5), we obtain that for arbitrary = = 0 there exists jo such that
7.1 joimplies

, , TR R T
g = wal|* = 2[ [P ol ] = [+ el ® = 2B (uz) + Eup)] — 4E (jT) :

g

2(d +2) + (d+2)] — 4d = 4e.

Thus there is u* € V such that lim({u;) = u*  Since #; € K and K is closed, we obtain
u* € K. The continuity of & implies

Equation 1.114. (5.6)

E(u*) = lim Eu;) = inf £

The solution of (5.6) is unique, because if £(ii) = infx £ then
w®, i, u*, 1, ...

must be a Cauchy sequence according to the above argument.

Now we show that « = u* satisfies (5.4). Let v € K be an arbitrary fixed element and
consider the function h defined by

hit) = Flu" + e —u™), te][0,1].

Since K is convex, 4 +t(v —u*) € K forall t € [0. 1] hence

Equation 1.115. (5.7)

Rit) = E(u* +tle —u™)) = E(u™) = h{0).

Since

hit) = E(u”+t(v—u")) = (A(u” +t(v—u”)), u” +t(v—u” ))—2(F, u” +t(v—u”))
tg{_- (v —u*),v— o™y + t[{Alv —u*), w*) + {Au™, v — ™) — 2{F, v — w™} ]+

{Au*, w*)y — {F, u*),

by (5.7)

0 < K'(0) = (A(v—u™), u*)+{Au™, v—u™}=2{F, v—u*) = 2[{Au*, v—u*)—(F, v—u*}],

so we obtained that « = «* satisfies (5.4). Since A is strictly positive, the solution of (5.4) is
unique: assuming that . satisfies

{Aujv—ujy z {Fv—ujlforallv e K, j=1,2

we have
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{Auy, vo— w1} = (Fous —ur),  {(Awa, uwg — ua) = {Fug — ual.
The sum of these inequalities results

{Auy — Aus, ug — w1} = 0, hence us = uy

because A is strictly positive. O

As a generalization of (5.4) for arbitrary Banach space 17 and nonlinear operator A : V" — 1"* we have the
definition of an abstract elliptic variational inequality:

Definition 5.2.
Let V7 be a real Banach space, i C 1" a closed convex set, A: K — V"* a (nonlinear)

operator, /' € V*. Then the variational inequality is the following problem: find u € &
satisfying

Equation 1.116. (5.8)
{Alw),v —u) = {(F.v —u} for allv € K.
Remark 5.3.

In general, the variational inequality (5.8) is not connected with the minimum of a functional.

Remark 5.4.

In the particular case when K is a closed convex cone with the vertex 0, the variational
inequality (5.8) holds if and only if

Equation 1.117. (5.9)

{Au, v} = {F. v} for all v € K and

Equation 1.118. (5.10)
{Au, u) = {F, u).
From (5.9) we obtain that in the case K = V7 (5.8) is equivalent with the equality
{Au, vy = (F.v) for all v € V, ie. Alu) = F.
Indeed, from (5.8) with v = 0 and + = 2u we obtain
—{Au, uy = —{F. u) and {Au, u) = {F, u),
respectively, i.e. we have (5.10). Further, subtracting the equality (5.10) from (5.9), we obtain (5.8).

Now we formulate some examples for solutions of (5.8) which can be considered as weak solutions to boundary
value problems for equation (1.1) with certain nonlinear boundary conditions.

Example 5.5.

Consider the linear operator (5.1) defined in V' = H* (€2) and set
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K={ve  HYQ) :v|aa > 0}, (F.v) =f frdr with some f £ L2(0).
2

Then K is a closed convex cone with vertex (.

Now we show that a solution u € K of (5.8) can be considered as a weak solution of the eqyalion (1.1) with
some nonlinear boundary condition. First assume that « is a sufficiently smooth (e.g. # € €~ (1)) solution of
(5.9), (5.10) with sufficiently smooth functions @.&- ¢: f. Then by Gauss’s theorem for v € K, v € C*(£2)

Equation 1.119. (5.11)

T
f frdr = {F,v) < {Au, v} = Z f i D) (Djv)dx —i—f cuvdr =
Q e Q

n
v Z a5 (D e der,

Lh=1

o= DjlairDeu) +cu | dr+
[ ¢ X pianbi) /

=1 FLY]

Setting © = ¥ and * = —¢ in (5.11) with arbitrary ¥ € C3 (£2), we obtain

Equation 1.120. (5.12)

T™
f=- E - Dj(ajpDeu) + cu in classical sense .
J.k=1

Thus (5.11) implies for the “conormal derivative”

T

= Z i D)

k=1

L
f v ude = f vy ai(Diu)pide =0
ly! ily!

T
Lh=1

for all v € C" (€2) with v|ac = 0, hence

Equation 1.121. (5.13)

T
0% = Z k(D) =0 on 90
k=1

and by u € K we have

Equation 1.122. (5.14)
u = 0 on 082,

Since (Au. u} = {F. u} we obtain from (5.11)

f w (@ u)de =0
iy
which implies by (5.13), (5.14)
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Equation 1.123. (5.15)
u(%u) = 0 on €2

Summarizing, if * € C*(2) s a solution of the variational inequality (5.8) (i.e. (5.9), (5.10)) then « is a classical
solution of the (linear) differential equation (5.12) with the nonlinear boundary conditions (5.13)—(5.15).
Conversely, it is easy to show that a solution 4 € C*(€2) of the boundary value problem (5.12)~(5.15) satisfies
the variational inequality. Therefore, a function u € K satisfying the variational inequality (5.8), can be
considered as a weak solution of (5.12)—(5.15).

Example 5.6.

Consider the operator (5.1) in V' = H (£2) with
K={reH(Q):v=0ae inQ}, (Fv)= f fuedr with some f € L*(€2).
0

Then K is a closed convex cone with vertex 0.
Assume that # € C*(2) jis a solution of (5.8) (i.e. of (5.9) and (5.10)). Let
O ={reQ:ulx) >0}, Qou={re:ulx)=0}

Consider an arbitrary function ¥ € C5(22+) and let v = u + £ with some = € B. Then, clearly, » € K for
sufficiently small || (because « has a positive minimum on SUPP#) and so from

I 1 i ¥ 1
{Alu), v —u) = {F,v —u)

we obtain the differential equation (5.10) as in the previous example. Further, since u € K,

Equation 1.124. (5.16)

=0 on d€1,

and, clearly,

Equation 1.125. (5.17)
0w =0 on 882 N Q.

Thus the smooth solution of (5.8) satisfies

Equation 1.126. (5.18)

T
— 3 DjlajuDiu] +eu=finQy, w>0inQy,
qk=1

the boundary conditions (5.16), (5.17) and

Equation 1.127. (5.19)

w=0in Qs =04 0.

So a smooth solution u (< c? (ﬁ)) of (5.8) satisfies the boundary value problem (5.16)—(5.19) with “free
boundary”.
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It is easy to show that if * € C”(€2) satisfies (5.16)~(5.19) then u is a solution of (5.8).

5.2. Existence theorems

Now we formulate and prove two existence theorems on the variational inequality (5.8).

Theorem 5.7.

Let V7 be a real reflexive separable Banach space and i < V" a closed, convex, bounded
subset. Assume that A : K — 77" is bounded and pseudomonotone. Then for all #* € V*there
exists u £ K which satisfies (5.8), i.e.

{A(u),v —u) = {(Flv —u) for allv € K.

Remark 5.8.

By definition, a bounded operator A : & — V" is called pseudomonotone if

Equation 1.128. (5.20)

(ug) = wwealkly in V., wup € K, lmsup{A(ug), up—u) <0

=

imply

Equation 1.129. (5.21)

.r.-lim {Alwg), up—u) =0 and (Afug)) — Alu) wealdy in V™.

Proof of Theorem 5.7.
Let Vin V" be linear subspaces of dimension m such that
Wwwcvec...Cc Vi, C...and UV, =1V,

m=1

Further, let K., = Vi, M K, Then K., C Vin is a closed, convex, bounded set,

KiCKoC..C KpC...ond UX_ K,, = K.

First we show that for all mn there exist solutions .. € K of the (“finite dimensional”)
variational inequalities

Equation 1.130. (5.22)
{A(thin ). v — tgn) 2 {F.v — 1y} for all v € K.

In the finite dimensional (Banach) space Vi» define some scalar product ] generating a norm
which is equivalent with the original norm in V.. If g € V™ then the linear functional

w i {g.w),  w eV,

is continuous in the Hilbert space Vin (with the scalar product [-. ']), hence there exists a linear
and continuous operator B : V" — ¥}, such that

g, w) = [Bg, w] for all w £ V,,,.

Thus the inequality (5.22) can be written in the form
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[B{A(um)), v — tg] = [BE, v — ], v € Ky,

i.e.

Equation 1.131. (5.23)
[”—m- (S ”—m] = [”—m + BF - B(A.(H.m:]:]. v — ”-m]- v e K.

Denote by Fin the operator, projecting V.- on to the convex set A with respect to the scalar
product [ Then inequality (5.23) is equivalent with

Equation 1.132. (5.24)
e = P (thn + BF — B A(1m)]).

Consider the operator @ @ fimn — Kon, defined by

Equation 1.133. (5.25)

Qu(v) = Pu(v + BF — B[A(v)]). v € K.

Figure 1.1.

iy + BF — B[A(”JH)]

Figure 1.1

Inequality (5.23)
We claim that @m is continuous. It is sufficient to show weak continuity, as K. is of finite

dimension. Assume that (%) — v in K. Since the bounded operator A is pseudomonotone,
A is demicontinuous (Proposition 2.7), thus

(A(vg)) = A(v) weakly in V* and so B[A(vg)] — B[A(v)] in K, and
P (vk + BF — B[A(v)]) = P(v + BF — B[A(v)]) as k — oc.

Brouwer’s fixed point theorem implies that the continuous map @ : f:n — Ko has a fixed
point, i.e. there is a solution .. of (5.24).

Now consider the sequence (1) of solutions to (5.24) (i.e. to (5.22)). Since tm € K C K|
K is bounded and V" is reflexive, there is a subsequence of (tm ), again denoted by (tm) such
that
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Equation 1.134. (5.26)

() — u weakly in V.

Since 1. € I, K is convex and closed, we have u € K. Now we prove

Equation 1.135. (5.27)
Limsup{A (), tm —u) < 0.

M—oC

AsUin—1 Ko is dense in K, for arbitrary = = 0 there is 0 € U1K such that

Equation 1.136. (5.28)

[t — wallyv < =

Further, un € iy for sufficiently large m, thus by (5.22)

(At ), o — o) < (F. i — g).

hence by (5.28) and the boundedness of |4 (e ) {1

(At ) i — 1) = {Altm ) o — w0} + (Al ) ug — v} L {F gy — wp) + o2
with some constant «. By (5.26), (5.28), this inequality implies (5.27).

Finally, since A is pseudomonotone, (5.26), (5.27) imply

Equation 1.137. (5.29)
lim (Al ). ey —u)y =0, (Alum)) — Alu) weakly in ¥V

M—oC

(for a subsequence). For arbitrary fixed * € U, —1 fom the variational inequalities (5.22) can
be written in the form

(Al ) v — )y + (Al )yt — th } 2 {F, v — 1) if m is sufficiently large.

By (5.26), (5.29), from this inequality we obtain as n — =

Equation 1.138. (5.30)
{Alu), v —u) = {F,v —u) for any v € US_  K,,.
Since Yim—=1 m is dense in K, (5.30) holds for arbitrary © € K, i.e. u is a solution of (5.8). o

Now we formulate the extension of Theorem 5.7 to unbounded sets K.

Theorem 5.9.

Let V7 be a reflexive separable Banach space and /& C V" a closed, convex subset. Assume that
A: K — V*is bounded, pseudomonotone and coercive in the following sense: there exists
vn € K such that

Equation 1.139. (5.31)
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{Alv), v — o) , ;
T — +’3C_ |f_||r ||f'||'| —r OO0, [ E _!r\,
v

Then for arbitrary £ € V*there exists a solution u € K of (5.8).

Proof.

Set Bu ={v €V : |lv[| = R}and Ky = K N By. Since Kx is a closed, convex, bounded
set, by Theorem 5.7 there exists i € i with

Equation 1.140. (5.32)

(Alug).v —ug) = (F.v —up) for any v € Kp.

Applying (5.32) to v = voand 12 = [[vol[v, we obtain by (5.31)
{(Alug).vo —ur) = (Flooo—ur) 2 —||F|ve||vo — wnlv.
hence

{(Aflug).up — vo}
[l ][y

[ro —ug|v

< [[F v~ | lwollv + sl
- lurlv

llurll

< v~

where the right hand side is bounded if [[#x[lv = 1. Thus by (5.31) [l#x v is bounded for all
It. Consequently, there are a sequence (R, converging to + ~c and u € V" such that

Equation 1.141. (5.33)

(up,) — u weakly in V.

Since i, € K, © K we have u € K. According to (5.32), for any v € K, sufficiently
large k

{Alup, ). up, —u) < {Fup, —up =0

thus

limsup{A(up, ), un, —u) < 0,

=

hence by (5.33)

Equation 1.142. (5.34)

Ll_lfil: {(Alup, ) up, —u}=0and (Alug,)) = Alu) weakly in V*
because A is pseudomonotone.

Applying (5.32) with arbitrary fixed v € K, 2 = Itk > [[v[[v, we obtain
{Afug, ) v—wd+ (Alup, )ou—up) = (F.v—ug,)

whence one obtains (by (5.33), (5.34)) as k& —+

(A(u), v — u) = (F, v — u).

i.e. u € I satisfies (5.8). o
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Remark 5.10.
If A : K — V*is strictly monotone then the solution of (5.8) is unique.
Indeed, assuming that ;i € ¥ satisfies
(Aluj)or —ujy = (Fov —uj), forall ve K, j=1.2
we obtain
(Alur)o vz —ur) = Fous—ur). {Aluz), uy — v} = {F.uy — ua)
whence
{A(u1) — Alua).ug —ug) <0
which implies w1 = ua,
Remark 5.11.

Similarly to Remark 2.17, it is easy to show that if A is uniformly monotone then the solution
u of (5.8) depends on £ continuously. Indeed, assuming

{Alu).v—ug = (Fov—uy), forallv e K, j=12

we have

{Alwr) — Alua), wg — wa) < {F1 — Fo,ug — ua) < || Fy — v |ur — wallv.
If A is uniformly monotone then according to Definition 2.15

alllur — walv)|lur — wallv = {A(u1) — Alua), u1 — ua),

thus

af[ur — uallv) < |F1 — Faflv-, i Jur — usllv < a™ (|F1 — Fallv-)
where @~ " ¢ [0, 5¢) — [0, %) js a continuous function and @' (0) =0,
5.3. Problems
1.
Consider the operator (5.1) in V' = Hi(€2) with
K={ve H[% () 1 = v < ahg ace. in
where 1. ¥’z are measurable functions. By using the arguments in Example 5.6, show that in this case the

solution of the variational inequality (5.8) can be considered as a weak solution of certain boundary value
problem with “free boundary”.

Consider the operator (5.1) in V' = Hii(£2) with
K ={v € HY Q) : |De(x)] £1 ae in Q}

By using the arguments in Example 5.6, show that in this case the solution of the variational inequality (5.8)
can be considered as a weak solution of certain boundary value problem with “free boundary”.
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. - ~l.p .
Let £ C " be a bounded domain, V' = Wi (2) p = 2 and K < V a closed convex set. Define the operator
Aby

{Alu). v} = Z f (Dju)|DulP?Djv. w.veV.
=17

Prove that then for all /" € 17 there exists a unique solution of the variational inequality (5.8) and it depends
on F continuously.

Let 1" be a closed linear subspace of W™ (£2) (m = 1.p= 2) and K < V a closed convex set. Define the
operator A by

{Alu), v} = Z f(D"H.)|D"’fr.|"_2D"’t‘. u, v € V.
|ex| <am @

Show that for all £* € 17* there exists a unique solution of the variational inequality (5.8) and it depends on £
continuously.
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EVOLUTION EQUATIONS

1. 6 Formulation of the abstract problem

In this section we shall motivate and formulate the abstract Cauchy problem for first order evolution equations
and problems which will be considered for nonlinear parabolic equations with nonlinear elliptic operators of
“divergence type”.

In [67] the linear parabolic equation of the following form was considered:

Equation 2.1. (6.1)

T
Diu— Y DjlajuDiu] +cn = f in Qp = (0,1) x ©
qk=1

where ©2 © B is a bounded domain, D¢ = ((1_; with the Dirichlet boundary condition

Equation 2.2. (6.2)
ulr, = g where I'r = [0,717) x 00

and the initial condition

Equation 2.3. (6.3)

w(0,x) = hixr), =&l

Figure 2.1.

>

[ —

A
‘1-]

" Q ’
w n
34

Figure 2.1
The “cylinder” @7

Assume that v € C'*(Qr) (i.e. u is a function which is once continuously differentiable with respect to ¢ and
twice continuously differentiable with respect to: in @7) is a classical solution of (6.1) — (6.3). Multiplying the
differential equation (6.1) with a test function v € CHQ7) and integrating over &7, by Gauss theorem we
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obtained an equation which (with (6.2)) defined the weak solution of problem (6.1)- (6.3). In this formulation
the equation contained the initial condition (6.3), too.

Now we shall give another definition of the weak solution for certain nonlinear parabolic equations and as a
particular case for the linear equation (6.1). We shall consider nonlinear parabolic equations of the form

Equation 2.4. (6.4)

Dyu — Y  Djlaj(t, x,u, Du)| + ao(t, r.u, Du) = f in Qr,

=1
which is analogous to the nonlinear elliptic equation (1.4) of divergence form.

In order to define the weak solution of (6.4), (6.2), (6.3) with homogeneous boundary condition, multiply the
differential equation (6.4) with a test function * € €3 () (i.e. by a C'! function with compact support), to obtain

Equation 2.5. (6.5)

n
f (Dyu)vdr + Zf aj(t, . u, Du)Djedrs + f ap(t, . u, Du)vdr =
¢ o a

02

i
Judr.
0

Later we shall see that if the functions @; satisfy certain growth conditions (which are analogous to (A2)) then
for a.a. fixed t € 0,17,

w s ot u(t, o), Du(t, o)) € LYQ) if o — u(t.x) € WHPQ)
(l<p<oc.l/p+1/g=1).

~1l.p
Then (6.5) holds for all test functions * € W5 ™(£2),

Introduce the notations
V=WarQ). Ul)=x—ult.z), ze

and with a fixed * € [0. 7' define operator A(t) and operator A by

Equation 2.6. (6.6)

(A@E), v} = (AT ®). v} =
Zf a(t, . u, Du)Djedr + f ag(t, z.u, Dujedr, Ut),v €1
‘= /o 3!

and define £'(t) for all fixed ¢ € [0. 1] py

Equation 2.7. (6.7)
Fltw = f flt,o)v(x)dr, assuming @ — f(t,xr) € L9(Q).
0

Then for each fixed ¢ € [0. 7]
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[A)(H) e V*. A(t):V = V5. F(t)eV*

and equation (6.5) can be written in the form of the “ordinary differential equation”

Equation 2.8. (6.8)
(DU () + [AIN](t) = F(t), te[0.T1]

In order to give the exact definition of the equation (6.8), we have to define the derivative D07, Further, we
have to give the exact definition of the initial conditiont’ (0) = £ corresponding to (6.3). The homogeneous

boundary condition (6.2) (i.e. the case # = 0) will be taken into consideration by V" = W (@),

First we define the function spaces Z-*(0. 1% V)which will be the domain of definition of operator A.

Definition 6.1.
Let VV be a Banach space, 0 < 1'< oc, 1 <p < oo, Denote by L”(0.7:1V) the set of

measurable functions / = (0. 1) — V such that | f (£)II3- is integrable and define the norm by

)
T/ f | FE .

Then L7(0. 1% V) is a Banach space over I (identifying functions that are equal almost everywhere on (0 1)), If
V" is separable then £”(0. 1 V) s separable, too.

Denoting by V* the dual space of 1 and by - -} the dualities in spaces V"*, /, we have for all / € L"(0. 13 V),
g€ LY0. 1. V") with 1 < p < oc 1/p +1/q = 1 Hglder’s inequality

T /g T
< M g (). dt M ||f(ﬁ)||’.,'.-dt]

Further, for 1 < p < o< the dual space of L (0. 12 V) is isomorphic and isometric to £7(0. 13 V™), Thus we may
identify the dual space of L”(0. 1% V) with L7(0.72V™) Consequently, if V" is reflexive then L”(0.1: V) js
reflexive for 1 << p < o, The detailed proof of the above facts can be found, e.g., in [93]. The dualities between
L0, 75 V*) and £7(0. T V) will be denoted by [+ -]

1/p

T
f {g(t), f(t))dt

0

Definition 6.2.
Let 1" be a real separable and reflexive Banach space and H a real separable Hilbert space

with the scalar product (*- *) such that the imbedding V"  H is continuous and V" is dense in I
. Then the formula

{t,u)=(v,u), welV, veH

defines a linear continuous functional i over V" and it generates a bijection between H and a
subset of V', i.e. we may write

VcHCV?
which will be called an evolution triple.
Example 6.3.

Let £2 C 2" be a bounded domain, » a nonnegative integer and 2 < p < ¢, Let V" be a closed
- EE ) 2 . =
linear subspace of the Sobolev space W""(£2) and H = L7(£2). Then V. C H  V* is an
evolution triple.

Now we define the generalized derivatives of functions # € L7{0.1: 1),
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Definition 6.4.

Let V. C H C V* be an evolution triple, » € L”{0. 73V |If there exists w € L7(0. 13 V™)
such that

T T
f Gt (t)dt = —f e(t)w(t)dt
0 0

for all v € Ci~ (0. 1) (i.e. for all infinitely many times differentiable functions on (0. 1") with
compact support) then « is called the generalized derivativeof « and it is denoted by '

Remark 6.5.

In the above equality *(f) € V" is considered as an element of 1"*. In this case we shall write
briefly ' € L(0. 72 V) 1t is easily seen that the generalized derivative is unique.

Further, it is not difficult to show that ¢’ = w € L7(0. 72 V") if and only if
T T

f (w(t), o)’ (B)dt = —f {w(t), viz(t)dt for all p € C7(0.17)., v & H.
] 1]

Theorem 6.6.

LetV © H C V*bean evolution triple, 1 < p < nc, 1/p+1/g =10 < T < sc. Then
WO, T3V, H) = {u € LP(0. 15 V) : w' € L9(0, 15 V"))

with the norm

el = llwll oo, + ||”"||I.f-'-Z:[].T-.'r"}

is a Banach space. Wz (0: 75V H) is continuously imbedded into C([0: 7']; H) (the space of
continuous functions * : [0. 2] — H with the supremum norm) in the following sense: to

every " € W (0.7 V. H) there is a uniquely defined @ € C([0.17: H) such that u(t) = i(t)
forae. t € [0. 7] and

Il cqo.rymy < constllullwt o.rv.m)-

Further, the following integration by parts formula holds for arbitrary functions
u, v € WHO TV H) gng0 < s < ¢ < T
Equation 2.9. (6.9)
(u(t). v(8)) — (u(s). v(s)) = f (7). o) + (), (.
(In (6.9) *(t). 1(s) mean the values of the above @ € C([0.T]: H} in t. s, respectively.)
Remark 6.7.
In the case ¥ = # € Wy (0.7 V. H) e obtain from (6.9)
lu (@I = )% =2 f (), urdr.

The detailed proof of Theorem 6.6 can be found in [30].
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2. 7 Cauchy problem with monotone operators

In this section let V' € H C V* be an evolution triple, 1 < p < o¢, 0 < 1" < ~c and let us use the notations
T

X =LP(0.7T:V). [F.v] =/ (P(t),v(t)dt, veEX,FeX"
0

Let A: X — X be an operator given by

[A()] (1) = [A®)] (u(t))

where for a.a. fixed t € [0. 77, A(t) maps V" into V*, uo € H, F' € X*. We want to find * € W (0.7: V. H)
satisfying

Equation 2.10. (7.1)

u' 4 Alw) = F.  u(0) = un.

By Theorem 6.6 the initial condition makes sense.
Theorem 7.1.

LetV € H < V7" be an evolution triple, 1<p<oo 0<T < nc. Assume that for all fixed
t € [0, 7] A(t) : V' — V™ is monotone, hemicontinuous and bounded in the sense

Equation 2.11. (7.2)
JAG @I+ < ellelf + ki)

for all v € v, t € [0. 7] with a suitable constant c1 and a function 1 € L(0. 7). Further, A(t)
is coercive in the sense: there exist a constant 2 = 0 and a functionk2 € L' (0. 1) sych that

Equation 2.12. (7.3)
(A (), vy = el — ka(t)

forall v € V', t € [0. 7 Finally, for arbitrary fixed . v € V', the function

Equation 2.13. (7.4)
t e (A(t)(u),v), t&[0,7)] is measurable .

Then for arbitrary £* € L*(0. 1% V") and uo € H there exists a unique solution of problem
(7.1) with the operator A defined by [A(u)](t) = [A(#)] (u(t)),

In the proof we shall apply the following theorem of Carathéodory (see [93] and [19]).

Theorem 7.2.

Set I=l[to.totr]  K={xe&®":|r—w|<r} and assume that the functions
fiI=x K= j=1..nsatisfy the following conditions:

t — filt,x) is measurable on I for all fived r € K,
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x v+ fi(t. o) is continuous on K for a.a. t €1

(“Carathéodory conditions”) and there exists a function ¥ € L (I) such that
|fi(t.x)| < M(t) for allx € K. a.a. t € 1.

Then there exist absolute continuous functions & satisfying the initial value problem
L) = fi(t.€()) a.e. in a neighbourhood of to,  £(0) = o

where §(t) = (&1 (t). - .. Snlt)),

Proof of Theorem 7.1.

The proof is based on Galerkin’s approximation. Since V" is separable, there exists a countable
set of linearly independent elements 21. .... Z&. ... such that their finite linear combinations are
dense in V. We shall find the m-th approximation of a solution = in the form

m

i (1) = Zﬁ;,-,,, (t)z with some agy, € W, 1
E=1

such that for a.e. t € [0. 1

Equation 2.14. (7.5)

! (#). z) + (A ()] 255 = (F(#). zi).  §=1.....m.

VU

Equation 2.15. (7.6)

tyn (0) = 0 € Vi, =span(zi, ..., zn), where (iy,0) — un in H.

System (7.5) is a system of ordinary differential equations for @t because it has the form

Equation 2.16. (7.7)

m m

> g (O)(zk. 23) + (ABD anm (B)zi]. 25) = (F(£), 25)

E=1 E=1

and (7.6) is equivalent to

Equation 2.17. (7.8)

ajm(0) =a, j=1.....m

with some @jo €& The system (7.7) can be transformed to explicit form since the
determinant det(zx. 2;) # 0 because #1- ---- zn are linearly independent.

According to assumption (7.4), the functions

m

ajt,w) = a;(t,wi, ... ) = ::i(#)[z wizk], 2 i=1,....m
E=1

are measurable in t (with fixed ws) and continuous in % = (w1, ....wm) because for all fixed
te 0.7 A(t): V= V" is monotone, hemicontinuous, bounded by the assumptions of the
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theorem, thus it is pseudomonotone and so it is demicontinuous (see Propositions 2.5, 2.7).
From (7.2) it follows that | (t. w)| can be estimated locally by an integrable function M (f),
Consequently, by Theorem 7.2 (theorem of Carathéodory ), there exists a solution of (7.7) in a
neighbourhood of (.

The coercivity assumption (7.3) implies that the solutions .= and thus .. can be extended to
the whole interval [0: 7. Indeed, if u.m satisfies (7.5) in a neighbourhood of O, then
multiplying (7.5) by @.m(t) and summing with respect to J, we obtain

Equation 2.18. (7.9)
! ()t (8)) A LA [thars ()]« thra (£)) = {E (), 00 (£)).

Integrating (7.9) over an interval (0. ) (t € [0, 7 by Remark 6.7 one obtains
Equation 2.19. (7.10)

1 5] 1 ] ll.n ¥ !

Slm 7 — Slum(@e + | (A [um (7], tm(r)jdr =

= = ]

:
f {F(7), tn (7)) dT,

1]

hence by (7.3)

Equation 2.20. (7.11)

1 ! ) 1
3” Uyn “)”?I + 2 / ||t (T)”JH dr < 3” ”‘J”U”?I +

T i
f ka(m)dr + [[F | oo, v+ {f [|ttan ()]} dr}
0 0

As the constant ez is positive and 7 > 1, we get from (7.11) that there is a constant with

l|,-";|4

Equation 2.21. (7.12)
i
f |t ()|} d7 < comst, ¢ € [0,7]
1]

and thus

Equation 2.22. (7.13)
1t (£)]|3 < comst, ¢ [0,77.

Consequently, @i (t) (defined in a neighbourhood of 0) can be estimated by a constant, not
depending on ¢, therefore, the solutions @im can be extended tol®: .

Further, by using the notations -X = L"(0. 13 V7) X* = L*(0. 73 V") e obtain that

Equation 2.23. (7.14)
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ttm|lx.  sup |tm(B)]|g. ™ =1,2,... are bounded,
te[0.4]

hence [|4(tm )| x - is bounded, too because by (7.2) A : X — X™*is a bounded operator. Since

X. X" and H are reflexive, there exist a subsequence of (tm), again denoted by (tm ), and
we X, we X* ze Hsuch that

Equation 2.24. (7.15)
() = u weakly in X, (Alun)) = w weakly in X7,
(U (1)) — 2z weakly in H.
Now we prove
Lemma 7.3.
Let V. H C V* be an evolution triple, 1 <p < ¢, Assume that

satisfies (7.5), (m) — u weakly in L7(0. 13 V), (A(um)) — w weakly in
x*, (4 (0)) — wo weakly in H and (1 (1)) — = weakly in H. Then

Equation 2.25. (7.16)
' € LU0 V), w'+w=F  u@)=uy ull)=-=
Proof.

Let & € C>[0, 7] pe an arbitrary function and « € V" an arbitrary element.
Since YiZ1Vi =V there exist

Equation 2.26. (7.17)
v € 1 such that (i) — v in V.

. 171 TV 171 71
Clearly, Wy e g ;4({}‘ 1V, H:], U & 4! J‘('[]'. 1V, H:], thUS by (69), (75)

Equation 2.27. (7.18)
(o (1), 4 (D)) — (g (0), 20 (0)ey ) =

-
f [fug, (E), (B b 4 b (E)on, wan (£))] dt
i

T
f [{P(t] — [_-il:t:]][u.,”l:t:]], ()} + t:t_."."'l:t:lt‘p, H.,”(t]::]dt,
0
By the assumption of the lemma we obtain from (7.18) as m — =~
(z, 4 (Tye) — (wp, 0 (D)) =
T
f [{E(t) — w, () + (@' (E)vr, u(t))]dt.
i

Thus by (7.17) we getas I — o
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Equation 2.28. (7.19)
(z. () — (w0 (0)0) =

T
f [{F(t) — w. (£ + (" (E)v, u(t)}]dt.
0

In the case %' € €5~ (0. 1) (7.19) implies

T T
f [{F(t) —aw, vy (t)dt = — f (o, w ()]’ (£)dt
0

1]

thus by Remark 6.5 there exists ' € L7{0.1: V") and

Equation 2.29. (7.20)
w'(t) = F(t) —w, we W0, T:V. H).

Due to (6.9), (7.19), (7.20) for all «

Equation 2.30. (7.21)
T
(w (1), (1Y) — (u(0), ¢ (0)w) = f ('), (e} + (@ (Ee, u ()] dt =
0

(z, ¢ (1)0) — (wn, o (0)).

Hence with a function *" € Clx[”: T, ¢(T)y =1, 4(0) =0 we obtain
w(1’) = z and with (1) = 0, ¢(0) =1 u(0) = un,_ So by (7.20) we have
proved Lemma 7.3. o

By (7.6) and Lemma 7.3 (7.5) implies (7.16). Further, we show

Equation 2.31. (7.22)
litn sup[A(tty ), tyn — u] < 0.

T —F OC

By (7.10)

T

T
f ::[_-il:t:]][u.,”(t:]], o (E)4dt = f {E(E), g () A+
i i

1 1 S
Sl O3 = Sl (DI

hence (7.6), (7.15), (7.16) imply

Equation 2.32. (7.23)

T

lim :-«'upf A [thore ()] thoma ()bl =
0

M—oC

T
e y 1 2 1 . . g2
A {F(t), u(t)dt + §||u.l:{}:l|| H g l};alzf”u.,” (105 -

Since by (7.16) in the Hilbert space H
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i (1) — w(1) weakly in H,

we have

e (2| 1 =< Tiam inf ||ty (27)]] 21

whence (7.16), (7.23), Remark 6.7 imply

1 1
litn sup|A (), tn] < [£u] + 3“”—(“)”?; - 3||fr.('.!')||%I =

1 I
[1', ] + [or, u] + a”fﬂ({]‘)”%; — 5 lul W3 = [w, ul,

thus by (7.15)

litn sup| A (), M — w] = [, 1] — [w, u] =0,

M—oC

i.e. we have (7.22).

Finally, by (7.2) A : X — X" is bounded and it is monotone since A(t) is monotone for each
fixed +. Because of the hemicontinuity of “4(t), A : X — X™*is hemicontinuous by (7.2) and
Lebesgue’s dominated convergence theorem. Therefore, Proposition 2.5 implies that
A: X — X*is pseudomonotone (-X = L”(0. 7% V) is reflexive). Consequently, (7.15), (7.22)
imply & = A(u) which completes the proof of the existence.

Uniqueness of the solution follows from the fact that A(£) : V= V* is monotone for all .
. 171 A . . T
Indeed, assuming that *1- 42 € W5 {0. 13 V. H) are solutions of (7.1), we find for all ¢ € [0, 1]

i i
f[] {ul(7), ur (7) — wa(r)idr +A {{Alu)](T) ur(7) — ua(r)dr =

i
f {Fir),u1(r) —ual(r)idr, =12

1]

whence

Equation 2.33. (7.24)

i
f (i) — wi(T), ui(T) — wa(r)pdr+
0

'
A {|Alu)] () = [Alu)] (7). wi(r) — wa(r)idr = 0.

Since 4(7) is monotone for a.a. fixed 7, the second term on the left hand side of (7.24) is
nonnegative, thus by (6.9)

1 () — wa ()3 = [[ur(0) — ua()]|% <0

which implies [[u1(t) — u2(t)[l s = O for each ¢ because u1(0) —u2(0) = 0, thus u1 = 12, o
Remark 7.4.

Assume that the conditions of Theorem 7.1 are satisfied such that A(*) is uniformly monotone
in the sense

Equation 2.34. (7.25)
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c:[‘{w(?‘)]l:u:] — [i(f:}](tg) 1 — va) = ol — tg”’.ll . te =V
with some constant ¢ = 0, for all £ € [0.7]. Then the solution of (7.1) depends on£ and o

continuously: if %j is a solution of (7.1) with ¥ = F; o= o (7= 1.2) then for all
te[0,1]

Equation 2.35. (7.26)
[l (t) — ”-Z(t:]”%I + el — ”'2||J:‘_.l-.j[]_'r-_'.-'j. <
& F1 — Fal| Lo oy + lluor — uozllFy

with some positive constant ¢. Indeed, similarly to (7.24) we obtain

f
[ua () = w2(0)IF = lluor — wozlF + ?f‘-f [ua(r) = ua(r)[[}dr <
0

f 1/q I 1/p
2 { £ (T) — Fg(’.")||'.f_-.ff’."} {f lu1(7) — w27} EFTT}
0 0

whence, by using Young’s inequality with a sufficiently small £ = 0 we obtain (7.26).

Remark 7.5.

Assume that there exists « > 0 such that the operator B3, defined by B(r) = [A()](v) + av js
uniformly monotone, i.e.

(A®](e1) = [AB)] (v2). w1 = v2) = ellor = vl = alfer = e

with some constant « == 0. Then the solution of (7.1) is unique and it depends continuously on
£ and ua.

[

Indeed, multiplying the equation (7.1) by e, we obtain that @(t) = e “‘u(t) satisfies

i(0) = uo and

i(t) + e [A(D)] [e™ @ ()] + aii(t) = e~ F(t).
Applying Remark 7.4 to the operator ff(ﬁ), defined by
[B®)](r) = [Al)][e"v] +av

and to @i, we obtain the uniqueness of the solution of (7.1) and for iij(t) = e Muylt),
F(t) = e " F5(t) ( = 1. 2) an estimation of the form

- - 2 co. -~ P
i () — 2 ()5 + 5llia = 2l T oy <
&l Fy = F2llf oo mmy + lluor — ozl 3.

Remark 7.6.

According to the proof of Theorem 7.1, a subsequence of the Galerkin solutions (ttsm )
converges weakly in £7(0. 1 V) to a solution « of (7.1). Since the solution of (7.1) is unique,
the total sequence (:n ) is also weakly converging to «. Further, similarly to the elliptic case, if

(7.25) holds, i.e. Alt) s uniformly monotone, then

() = u strongly in LP(0, 1 V).

58
XMLmind XSL-FO Converter



FIRST ORDER EVOLUTION
EQUATIONS

Indeed, assuming that the original sequence does not converge weakly to u, by using Cantor’s
trick, we get a contradiction. Further, by (7.25)

T
f‘.f s (£) — Hl:f:l”r dt < (Al ) — Alw), thyn, —u] =
]

[_4(”.,”:], T H.] — [_4(”.:], U — H.] —0

by (7.15) and (7.22) since A is pseudomonotone.

3. 8 Application to nonlinear parabolic equations

By using the results of Sections 3, one obtains the following applications of Section 7 to nonlinear parabolic
equations.

Let 1 be a closed linear subspace of W' () (containing Wa "'(€2)), 2 < p < =, 2 c " a bounded domain
o . . .

with “sufficiently smooth” boundary (see, e.g., [1]), H = L*(2) ThenV ¢ H < V*is an evolution triple. We

shall consider operators <4 : (0. 72 V) — L7(0. 72 V") defined by a formula which is analogous to (3.1).

On functions @ we assume

(B1) Functions @ : Qr x B" ' — R (j=1....n) satisfy the Carathéodory conditions, i.e. for a.e. fixed
(t.2) € Qr — (0.7) x O

Ersajlt.o. &), & eR"™! is continuous
and for each fixed & € B!
(t.x) = aj(t.r.&). (t.r) € Qr is measurable.

(B2) There exist a constant ¢1 = 0 and a function ¥1 € L*(Q7 ) (1/p + 1/a = 1) such that for a.e. (t. 7) € Qr,
all § € B

laj(t, o, &)| < e1|&[P~ + R (t, o).

(B3) Fora.a. (t.7) € Qr all £. 6" € R

T

> lajt, . &) — ajlt. . £))(E — &) = 0.

=0

(B4) There exist a constant c2 > 0, k2 € L' (Q7) such that for a.e. [t ¥) € Qr all £ € B

n
Z aj(t, . £)E = eal&|” — kalt, ).

In this particular case, when 1" is a closed linear subspace of W' (), for a function ¥ € L”(0, 73 V') we shall
denote U (t) by u(t. =) and instead of U € L”(0. 1% V') we shall write v € L7(0. 13 V),

By using the same arguments as in Section 3, one proves

Theorem 8.1.

Assume (I31) — (B4). Then the operator A, defined by

Equation 2.36. (8.1)

.
[Afu). v] = fn (ABIU B, v(t)ydt =
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I

T
/ f Z a;(t,c.u, Du)Djv 4+ aplt. o, u, Due | de 3 dt, w,ve LP(0.1:V)
0 LY ]

=1

satisfies the assumptions of Theorem 7.1. Thus for any £ € L7(0. 12 V") ug € H = L*(4)
there is a unique solution w of (7.1) with the operator (8.1).

Proposition 3.3 implies the following sufficient condition for (33).

Proposition 8.2.

Assume that functions @ satisfy ( B1), further, for aa. (f.x) € Q7  the functions
£ aj(t. 7.£) are continuously differentiable and the matrix

( fajlt, =, &) ) "
Ok k=0

is positive semidefinite. Then (33) holds.

Proposition 8.3.

Assume that the assumptions of Proposition 8.2 are fulfilled such that for a.a.(t.*) € @1,
each é.n€ B*H

Equation 2.37. (8.2)
", Oa;

. Gc X
=0 sk

T
(b2, Emimee 2 e3 Y & 172

with 7 = 2 and some positive constant 3. Then

T n
> lajlt. . &) —ajlt. o )& — &) = &y |46 =&
=0 =0

with some constant &z > 0. Consequently, the operator “A(t), defined by (8.1) is uniformly
monotone in the sense (7.25) and so the solution of (7.1) is unique and it depends
continuously on F and uo according to (7.26). Further, due to Remark 7.6 the sequence,

constructed by the Galerkin method converges to the solution « with respect to the norm of
e, 1 v

Example 8.4.
A simple example satisfying all the above conditions is the equation
Dy — D — eufulP~? = f. ¢ > 0is a constant .
(See Example 3.8.)
In the case V = W5 7(€2) (with bounded ©2) the conditions are satisfied also for the equation
Dy — Dpu = f.
3.1. Problems

1.

Assume that the functions
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ot Qr«BE—-K 5=01.... n

satisfy the Carathéodory conditions and for a.a. (. ) EQr
&+ oyt x, &) is monotone nondecreasing,

AilGIT S a2 &) < BIGITT & ER

with some positive constants 1. 52, Consider the operator

T

-
[A{u),v] = f f Z ot o, Dyu) Do + oplt, o ow)e | dep di,
0 a |

w, v e LP(0,1:V)
where 1 is a closed linear subspace of W' 7(2), p = 2,

Show that for arbitrary ¥ € L7(0.1°: V*) and uo € L*(2) there exists a unique solution of problem (7.1).

Assume that the functions &i — @j(t. 7. &;) are continuously differentiable and there exists a positive
constant /3 such that

ey
3

(f: w0, &) = Balé; P72

By using Remark 7.5 and Proposition 3.4 , show that the solution of the above problem depends continuously
on F and .

Let e, 3 : @7 — T be measurable functions satisfying
ol Soalt,r) < e, o <80 x) <o, for almost all (£,0) € Qp

with some positive constants r1. r2. Define operator A by

-
[Afu), v] =f[] (A [ (). v (£)ydt =

T
f {f [x(t. 2)Dju| DuP~2Djv + St :r)fr.|fr.|"_2t‘]ff:r} dt,
0 3!

u,v € LP(0.1: V) where V € WP(€) js a closed linear subspace, 7 = 2.

By using Theorem 7.1 and Remark 7.5, show that there exists a unique solution of problem (7.1) and it
depends continuously on £ and itq.

Assume that # € C**(Q7) s a (classical) solution of (6.1), (6.3) with the boundary condition
wlt, =) =glz), (t,o)el'r

where 9() = h(z) for = € #Q and wo € WP(Q) satisfies woloa =g . Define the function wo by
wol(t, o) = wolr),

Prove that then the function i = 1 — up satisfies
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i+ Al +uo) = F, i€ WL(0,T;V, H),
(0) = h — g
where V' = W P(2) H = L?(22), the operator A is defined by (6.6) and £ is defined by (6.7).

~ 171 A . e - . .
If 4 € W5 (0. 15 V. H) gatisfies the above conditions, u = i + un is called a weak solution of the above
(classical) initial-boundary value problem.

By using Theorem 8.1, show that if the functions @; satisfy (I71)-(54) then there is a weak solution
u = ii + ug of the above problem with nonhomogeneous boundary condition. (See Problem 4.)

Assume that the functions

fo:Qr =B =R, |o|<m

satisfy the Carathéodory conditions and for a.a. [f+ ) EQT
En = falt. 7, &,) is monotone nondecrensing,
Biléal""! S |falt 2. &) < Balal”", éu ER

with some positive constants 1. F2. Consider the operator

-
[A(u), v] =f[] (A [w(t)]. v(t))dt =

-
f f Z falt, o, D) D% | dr p dt,
0 Q

| x| <am

w, v € LP(0. TV ) where V € W™ P(Q) s a closed linear subspace, 7 = 2.m = 1and for || =0 poy = o
by definition.

Show that for arbitrary £ € L(0. 75 V™) and 1o € L*(£2) there exists a unique solution of problem (7.1)
with the above operator A.

Assume the the functions &« — falt.x.&a) are continuously differentiable and there exists a positive
constant /3 such that

-3
3 (t,r &) = FaléalP™", p=2.
i §

By using Proposition 3.4 and Remark 7.5 show that the solution of the above problem depends continuously
on F and uu.

4. 9 Cauchy problem with pseudomonotone
operators

In the proof of Theorem 7.1 we did not use the monotonicity of -%—(ﬁ) directly, it would be sufficient to assume
instead of monotonicity and  hemicontinuity that A(f) : V' = V" js  demicontinuous  and
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A LP0.7:V) — L90.7: V") is pseudomonotone. Moreover, it is sufficient to assume a weaker form of
pseudomonotonicity, which will be satisfied for operators of the form (8.1) if the functions % satisfy conditions
which are analogous to (A3), (A3"), respectively.

Definition 9.1.

Let VCHCV" be an evolution triplee »>1 . A bounded operator
(0. T- V a0, T. V*Y ; . V0TV H
A+ L2(0.7: V) = L*(0.T: V*) is called pseudomonotone with respect to Wy (0- 1% V. H) jf

Equation 2.38. (9.1)
g € H'Jf 0,15V . H),  (ug) = v weakly in LP(0,1: V),

Equation 2.39. (9.2)

(u}) — v weakly in L0, T V"),

Equation 2.40. (9.3)
litn sup[A(ug), g — u] <0

=

imply

Equation 2.41. (9.4)
.r.-lim [Afug) up — u] =0 and (Alug)) — Alu) weakly in L9(0, 17 V).

Theorem 9.2.

LetV C H C V7" be an evolution triple, l<p< o0 0«1 < oo, Assume that for a.a. fixed
te [0.7] A(t): V' — V" is demicontinuous and bounded such that for all » £ V', ae.
te 0.7

Equation 2.42. (9.5)
NAGI @)+ < callell +ka(e)

with a suitable constant ¢1 > 0 and ¥1 € LY(0. '), Further, A(t)is coercive such that for all
veV,aetel[0.1]

Equation 2.43. (9.6)
(A (). v) = eallvllf: = Fa(t)

with some constant ez > 0, k2 € L*(0. 1) and for arbitrary fixed u- v € V| the function

Equation 2.44. (9.7)

t s ([AB)](u).v). e [0.T)] is measurable .
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Finally, the operator <4 : L (0. Byl L QY- V"), defined by [A(u)l(t) = [A(®)][u(t)] is
pseudomonotone with respect to .

Then forany £ € X* = LY(0. 1% V") and un € H there exists a solution « of (7.1).

Proof.

Theorem 9.2 follows by a slight modification of the proof of Theorem 7.1, because we only
have to show property (9.2) for a subsequence of the sequence, constructed by Galerkin’s
method. Clearly it will follow from the fact that the sequence (t.,,) is bounded in (0. 13 V")

Multiply the equations (7.5) (defining wm with the initial condition (7.6)) with arbitrary
functions #im € L”(0.7) and integrate over [0-7]. Then we obtain for the sum of these
equations

Equation 2.45. (9.8)

[1l . w] + At ), w] = [F, w] where

Equation 2.46. (9.9)
w(t) = z bjm (t)z; and w e LP(0, 17 V).
i=1
The equation (9.8) implies
e ] < [[E ] 4 [ At). ] <
NEN ooy + N Atm ) Lo o.7:v3] 1wl Le o vy < constlw| e o 7

where the constant is independent of 7 and .

The functions w of the form (9.9) (for all m and arbitrary bim € L7(0.17)) are dense in
L0, 72 V™) because the linear combinations of #i are dense in v, thus

[ty ]| < const|w|| Le 0 vy

holds for all w € L”(0. 7 V') (with a constant, not depending on ). Thus we obtained that
(u7.) is bounded with respect to the norm of L7(0.7:V™) the dual space of L¥(0.1: V)
which completes the proof of Theorem 9.2. o

Now we shall formulate a generalization of Theorem 9.2. Let V' < H < V'* be an evolution triple, 1 < p < o,
0 < 1" < ~. Define operator L as follows:

Equation 2.47. (9.10)

Lu=u'. we D(L)={uec HTJ{ (0.7 V.H): u(0) = 0}

One can show that L is a closed, linear, densely defined operator from £7(0. 1 V) into L7(0. 72 V*) which is
monotone by Remark 6.7 since

T
1
[Lu,u] = A (' (), u(t))dt = 3””(1)”?; =0
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Further, L is “maximal monotone” , which means that there is no proper monotone extension of it. (For the
proof see, e.g., [93].)

Another example of a closed, linear, densely defined maximal monotone operator is (see, Theorem 13.2):

Equation 2.48. (9.11)
Lu=uw', weD(L)={ueW0.T:V.H): u(T) = u(0)}.

Definition 9.3.

Let V. € H C VV* be an evolution triple, 1 < p <2 0<1 < oc. Denote by L a closed,
linear, densely defined, maximal monotone operator from L£7(0. 1% V) into L*(0. 13 V") A

bounded operator <4 : L (0. 73 V) — L7(0. 72 V") js called pseudomonotone with respect to
D(L)jf

i, 0 € DIL),  (ug) = w weakly in LP(0, 1 V),

(Lug) — Lu weakly in L7(0, 17 V), limsup[A{ug), ue—u] <0

k—oe
imply
.r,-lim [Alug), up — u] =0 and (Alug)) = Alu) weakly in LU0, 71 V™).
Theorem 9.4.

Let V. C H C V* be an evolution triple, 1 < p <o 0 <1 < 0. Denote by L a closed,
linear, densely defined, maximal monotone operator from L7(0.1: V] jnto L7(0.7:17™"),
Assume that A @ L7(0. 13 V) — L{0. 7% V") js bounded, demicontinuous, pseudomonotone
with respect to 22(L) and coercive.

Then for all £ € L¥(0, 13 V* ) there exists a solution © € D(L) of
Lu+ A(u) = F.
For the proof see, e.g., [8].

It is important that in Theorem 9.44 : L7{0. 13 V) — L7(0. 13 V™) s not assumed to have the form

Equation 2.49. (9.12)
[Alw)](t) = [AB)] [u(t)].

i.e. [4(u)](t) may depend not only on *(t), thus the above theorem can be applied to “functional parabolic
equations”. (See some examples in Section10.)

Remark 9.5.

Applying Theorem 9.4 with operator L, defined by (9.11) and operator A, defined by (9.12),
one obtains existence of I'-periodic solutions, see Section 13.

Now consider the particular case when Lu = ' and 2(L] is defined by (9.10). We generalize the existence
theorem to the case of nonhomogeneous initial condition.

Theorem 9.6.
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Let V C H C V* be an edoldtign, #iple) 118 (€, % 1074 1" < oo and let L be defined by
(9.10). Assume that W0, 1.V, H) is bounded, demicontinuous,

Psgugomonotone with respect to and coercive such that for arbitrary constant

T, .
lim f“ (AG)] (). ult))dt — ] A(u)]| Lq (0.T:V+)
”If"—."x ||”‘||I.l"l::[].T'.'l'-:l

=+,

Then for all £° € L0, 175 V*) wuy € H there exists a solution * € W3 (0. 12 V. H) o

Equation 2.50. (9.13)

w + Alu) = F. ul0) = up.

Proof.

If un €V, one can reduce problem (9.13) to the case wn =0 as follows. By using the
notations to(t) = o, t € [0, 7] i = u— ug, problem (9.13) is equivalent to the problem

Equation 2.51. (9.14)
i+ Al + ug) = F. i(0) = 0.

Clearly, the operator @ — A(ii + uu) is demicontinuous, bounded and pseudomonotone with
respect to (L), Further, it is coercive because

[.4.[:-'7. + H.[]). ﬁ.] _ [.4.[:-'7. + H.[]). i+ fr.[]] — [.4.[:;?- + H.[]). H.[]] ~

” |qu;” Le(0.T:V) N ” |qu;” Le(0.T:V)

[Ali + o). @ + wo| — [Juo]l Lo ron A + wo)|l Ls o700 §
[l + woll Lo 0,709

& + ol e (o.7:v7)

— — +0oC
[l Le(0,T:V)

if [l e .m0 = o€ since then I +vollLeo.0v) = ¢ Thus for any wo € H there is a
solution i of (9.13) by Theorem 9.4.

Now let uo € H arbitrary element. Since 17 is dense in H, there is a sequence of unn €V,

converging to wo in H . According to the first part of the proof, there is a solution
iy, € H'J{ (0, 172V H) of

w4 Alt,) = F. 1(0) = 0.

By using the arguments of the proof of Theorem 7.1, we obtain that there is a subsequence of
(1. ) which converges weakly in L7{0. 7 V) to a solution of (9.13). o

5. 10 Parabolic equations and functional equations

5.1. Parabolic differential equations

Here we shall apply the results of Section 9 to the case when V" is a closed linear subspace of W'7(€2),
. . . L o .

2<p< oo, @ CR"is a bounded domain (with sufficiently smooth boundary), H = L7(£2) First we shall

consider operators A of the form (8.1), but instead of (123), with weaker assumptions, which are analogous to
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assumptions (A3), (A37), respectively, considered in the nonlinear elliptic case. It will be proved that A is
pseudomonotone with respect to W0 1. V. H) by using the following compact imbedding theorem.

Theorem 10.1.

Let V' € H < V" be an evolution triple, 2 a Banach space satisfying

Equation 2.52. (10.1)

VC BCV?*, theimbedding V C B is compact, B C V¥ is continuous .
Then forany 1 < p < ¢, the imbedding

W0, 7.V, H)C LP(0.1: B)

is compact.

In the proof of Theorem 10.1 we shall use

Lemma 10.2.

Assume (10.1). Then for arbitrary 7 > 0 there exists a constant ©n = 0 such that for all + € V

Equation 2.53. (10.2)
vl < nllelhv + eyllvfv-.
Proof.

Assume that (10.2) does not hold, then there exists 7 > 0 and sequences (cx). (&), vg € V),
satisfying

Equation 2.54. (10.3)

lvells = glleelv + exllve ||y, lim ep = +oc.
fe—p oo

Then for e = vi/||vkl[v we have

Equation 2.55. (10.4)

UL || B
lwellg =0+ ckllwelv-. |wslls = H < const

because the imbedding V' C B is continuous. Thus (10.3), (10.4) imply

Equation 2.56. (10.5)

lim |wg|v. = 0.
fe—p o

Further, since llt[lv: = 1 and the imbedding V' < B is compact, there is a subsequence (', )
of (i) which is convergent in 13. Due to (10.5) the limit in 3 must be 0, i.e.

lim |jwg, ||p =0
l—oc
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which is impossible because of (10.4). o

Proof of Theorem 10.1.

Let () be a bounded sequence in W5 (U 23 V. H) We have to show that a subsequence is

convergent in £7(0. 1 B), First observe that as 5 (0- 15 V- H) js a reflexive Banach space (
V., v* are reflexive thus Lp(0.1:V)  LY(0.7:V*) are reflexive), thus there are

v € W,(0.7:V. H) ang o subsequence of (i), again denoted by (&) such that

Equation 2.57. (10.6)
(vg) — v wealdly in I’T"l‘ (0.7:V.H), thus
(vg — v) — 0 weakly in H'Jf (0. 1: V. H).

To prove our theorem, we have to show that

Equation 2.58. (10.7)
(v —v) = 0in LP(0, 1 B).

Introduce the notation #x = v — v, due to (10.6) we have

Equation 2.59. (10.8)

(Th) — 0 weakly in I"F'Jlj (0,14 V. H), ”‘-:‘-'HH]'. (0.7 V) =

with some constant «* = 0. We prove that

Equation 2.60. (10.9)

(Th) — 0 in LP(0, 1 B).

By Lemma 10.2 for arbitrary 7 > 0 there exists ¢» > 0 such that
I7ells < nllellv + collte v

which implies

Equation 2.61. (10.10)
P&l e o) < 0l Tkl oo,y + enllEnkl Lo e £
'n + enl| Tkl Le o v

Since (10.10) holds for arbitrary 7 > 0, we shall obtain (10.9) by showing

Equation 2.62. (10.11)
() — 0 in LP(0,1T: V*).

The convergence (10.11) will follow from Lebesgue’s dominated convergence theorem, if we
show that for almost all = € [0. 7]
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Equation 2.63. (10.12)

7 (s) — 0 with respect to the norm of V*.
Indeed, fora.a. 5 € [0.7] ke ™

25 (s)]|v - = const

since (@) is bounded in W (0- 13 V. H) gng by Theorem 6.6 (0. 15V, H) jg continuously
imbedded into C([0. 1]: H), hence into C([0. 7]: 1*), too.

Now we prove (10.12). For simplicity, consider the case s = 0, the general case can be treated
similarly. Define functions ux by

Equation 2.64. (10.13)
ug(t) = te(At),  te (0,7
where the constant A € (0. 1) will be chosen later. By the definition (10.13)u#(0) = (0}, and

as (#) is bounded in Wz (0- 72 V. H) \e obtain inequalities

Equation 2.65. (10.14)

el Lego. vy < di AP, el Lo o,y < da AP

with some constants 1. d2 > 0, not depending on A. Let¥ € C*[0. 1] pe a function with the
properties #(0) = —1 (1) = 0, Then

Equation 2.66. (10.15)

T T T
g (0) = f (g ) dt = f pupdt +f plurdt = Bk + i
0

1] 1]

whence by (10.14)

Equation 2.67. (10.16)
7% O)lv = = lur(O)flv- < IB&llve + [lallv- <
daA P+ [lyxve

The number A € (0. 1) can be chosen such that the first term in the right hand side of (10.16)
is arbitrary small for all n < I. Therefore, we shall obtain (10.12) for s = 0 if we show that

Equation 2.68. (10.17)
[v&] = 0in V™.

According to (10.8) (Fx) = 0 weakly in W (0. T:V.H) | thys (i) — 0 and solux) — 0
weakly in L7(0. 1 V) for arbitrary fixed A € (0. 1), Consequently, by the definition (10.15) of
i
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Equation 2.69. (10.18)
(i) — 0 weakly in V.

Since the imbedding V" < V" is compact, (10.18) implies (10.17) which completes the proof
of Theorem 10.1. o

Now instead of (33) we formulate a weaker assumption on functions ., defining operators A(t) and A in (8.1)
which will imply with (1), (32), (34) that <4() satisfies assumptions of Theorem 9.2.

As in Section 8, let 1 be a closed linear subspace of W' ”(2) 2 < p < o, 2 c " a bounded domain (with
.. 2 R T
sufficiently smooth boundary), H = L~ {€). Instead of (133) we assume on functions @ : @ x B — |

(133) There exists a constant &2 > 0 such that for a.e. (f.#) € QT alln € E (. " € R"
Z[fu(aﬁ. o0, C) —ajt,x g, G — Cf) = fa|C—
i=1

Remark 10.3.

Assumption (123) is analogous to (.43) in Section 4.

Theorem 10.4.

Assume that €2 " is a bounded domain , €2 is sufficiently smooth and (131), (122), (33), (
B4) hold. Then operator A of the form (8.1) satisfies all the conditions of Theorem 9.2.

Proof.

All the conditions easily follow from the above conditions (see Theorem 8.1), we only have to
show that A is pseudomonotone with respect to W (0. 15V, H) Assume that

Equation 2.70. (10.19)
(ug) — u wealkly in LP(0, 1 V),

(u}) = u' weakly in L9(0, 75 V*) and

Equation 2.71. (10.20)
litn sup|A(wg ), we — 1] < 0.

E—oc

Since () is compactly imbedded into W*'(€2) (for bounded € with sufficiently smooth
boundary, see Theorem 4.1), by Theorem 10.1 there is a subsequence ofi%k), again denoted by
(1), for simplicity, such that

Equation 2.72. (10.21)
(ug) — win LP(Q71) and a.e. in Qr.

The remaining part of the proof is similar to that of Theorem 4.6. Since (2;tx) is bounded in
LP(Q7), we may assume (on the subsequence) that
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Equation 2.73. (10.22)
(Djur) = Dju weakly in LP(Qr). 7=1,...n.

Further,

Equation 2.74. (10.23)

[Alug ), wg —u] = f an(t, o, wg, Dug)(uy — w)dido+
oy

Zf [ (t, o, g Dug) — agit, o, we, Du)|(Djuy — Dyu)dtda+
i=1 Q7

ZJ a(t, o, g, Du)(Djug — Dju)dtdr.
Y or

The first term on the right-hand side of (10.23) tends to 0 by (10.21) and Hoélder’s inequality,
because the multipliers of (& — u) are bounded in £ (€Q7) (by (£72)). Further, the third term
on the right-hand side converges to 0, too, because (10.21), (1), (B2) and Vitali’s
convergence theorem imply that

ajlt, o g, Du) = a;(t, oou, Du) in LY (Q1).

Consequently, (10.20), (10.23) imply

Equation 2.75. (10.24)

limsup ¥ ajlt, g, Dug) — a(t, o,owp, Duw)|(Dyuee — Dyu)dtds < 0.
B B Bl Bl
i=1 L P

k—poe LT

From (£33), (10.24) we obtain

Equation 2.76. (10.25)

lim f | Dty — D |Pdtde = 0
F— o Qo

and (for a subsequence)

Equation 2.77. (10.26)

(Dug) — Du a.e. in Q.

Therefore, by (31), (82), (10.25), (10.21), (10.26) and Vitali’s theorem (Theorem 4.3)
a;(t. o up. Dug) — a;(t. z.u. Du) in LYQr). j=0.1,....n.

Thus by Holder’s inequality

Equation 2.78. (10.27)

(Alug)) = Alu) weakly in L7(0, 75 17).
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Finally, from (10.21), (10.23), (10.25) and (122) one gets

Equation 2.79. (10.28)

.r,-lim [Alug), g —u] = 0.

Since (10.27), (10.28) hold for a subsequence of (4&), by using Cantor’s trick, we obtain
(10.27), (10.28) for the original sequence. O

Remark 10.5.

According to the proof of the above theorem, operator A belongs to the class (5)+ and it is
demicontinuous.

Now we formulate assumptions (173"), (174"), which are analogous to (A43), (A4") in Section 4 which will also
imply with (1), (I72) that the conditions of Theorem 9.2 hold.

(B3) Forae. (.)€ Qr alln €R (. € B (= (&1...&n) # 7 = (§]. . &) we have

n

Z[ﬁ_;(t. .7, ¢) — aj(t.x.n, )& — &) = 0.

i=1
(B4') There exist a constant c2 > 0 and a function k2 € L'(Q7) such that for ae. (t.2) € Q7 all
= eRM =S eR (R

T
Zﬁj(t, x 1. ()5 = ea|(|F — kalt, x).

Theorem 10.6.

Assume (B1), (B2), (B3"), (B4). Then the operator A, defined by (8.}) satisfies the
conditions of Theorem 9.2. Thus, for any ¥ € L{0. 12 V") up € H = L(Q) there is a
solution of (7.1) with the operator (8.1).

- ~l.p
In the case when V" = Wi (£2), instead of (34) it is sufficient to assume (347), because then (
B4’) implies coercivity. (See Remarks 3.9, 4.11.)

Proof.

As in Section 3, one proves that (121), (B82) imply (9.5), (9.7) and (34) implies (9.6). Further,
by Theorem 4.9, the operator <4(t) : V" — V™ (defined in (8.1)) is pseudomonotone for a.a.
t € [0. 1] (since (B3"), (B4) imply: (A3"), (A4’) hold for a.a. fixed ¢ € [0. 1), Thus, for a.a.
t € (0.1 the bounded operator A is demicontinuous (see Proposition 2.7).

Finally, we have to prove that < : L7(0.75V) — LU0.7:V*) (defined by (8.1)) is
pesudomonotone with respect to W 0. 12V H) The proof of this fact is similar to that of
Theorem 4.9 (elliptic case) and we use only (134") instead of (134).

According to Definition 9.1, assume (9.1) — (9.3), i.e.

Equation 2.80. (10.29)

€ WHO,T: VL H),  (ug) — u weakly in LP(0, 75 V),
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Equation 2.81. (10.30)

(u) — u weakly in L9(0, 15 V™),

Equation 2.82. (10.31)
litn sup|A(wg ), we — 1] < 0.

E—oc

We have to show (9.4), i.e.

Equation 2.83. (10.32)
klim [Afug), v —u] = 0 and (A{ug)) — Alu) wealdy in L9(0, 13 V).

Since € " is bounded and &£ is sufficiently smooth, by Theorem 4.1V is compactly
imbedded into £”(£2) and thus by Theorem 10.1 the imbedding

W07 V. H) C LP(0, T; IP()) = L7 (Qr)

is compact. Hence, by (10.29), (10.30) there is a subsequence of (tix), again denoted by (&)
(for simplicity) with the properties

Equation 2.84. (10.33)
(ug) — win LP(Q71) and a.e. in Qr.

Then the proof of (10.32) is almost the same as that of (4.20) in the proof of Theorem 4.9.
Introduce the notation

prlt.r) = Z[fu(aﬁ. o g, Dug) — aj(t, o,ou, Du)|(Djug — Dyu)+
i=1

[an(t, o, ug, Dug) — ao(t, o, u, Du)](ug — u)

which is similar to the formula (4.23) of 7 (). Then

[Alug) — Alu), up — u] = f pic(t, x)dtdr

0y

and by (10.29), (10.30) we have

111115111}] pr(t, o)dtdr < 0.
v

k— o

By using the arguments of the proof of Theorem 4.9, we find

Equation 2.85. (10.34)

lim f pi:(t, o)dtdr = 0 and
[ - (JJ_

Equation 2.86. (10.35)
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(pe) — 0 ae in Qr.

The equality (10.34) directly implies the first part of (10.32). Further, (10.35), (10.33) and (
123") imply (as in the proof of Theorem 4.9)

Equation 2.87. (10.36)
(Dug) = Du ae. in Q.

Finally, by using (10.33), (10.36), (1), (B22) and Vitali’s theorem (Theorem 4.3) we obtain
the second part of (10.32) which completes the proof of Theorem 10.6. o

Remark 10.7.

One can formulate and prove a generalization of Theorem 10.6 to the case when A(t) is a 2im
order nonlinear elliptic operator which is analogous to (4.37). (See Remark 4.12.)

5.2. Functional parabolic equations

Now we shall show some applications of Theorem 9.4 which is a generalization of Theorem 9.2. In Theorem 9.4
A LP(0.1:V) — L*(0.1:V*) js such that [A(u)](t] is depending not only on (t), thus also “functional
parabolic equations” (e.g. equations with delay) can be treated. The following theorem will be a generalization
of Theorem 10.4 to functional parabolic equations with nonlinear and “non-local” third boundary conditions.

Let V' C WP(Q) pe a closed linear subspace (2 < » < ¢, © C " a bounded domain with sufficiently smooth
2 . .
boundary), £ = L=(£2), We shall consider operators of the following form.

Definition 10.8.

Define operator A by

Equation 2.88. (10.37)
[A{u), v] =

f {Z a;(t, o u(r), Dulz): w)Djv(e) + aglt. o, wlr), Dulr): fr.)t‘(:r)} dtdr+
@r | =1

T
f {f h(t, o rr.]t‘fff:rJ_-} dt, w,ve LP(0,17V).
1] el

Assume that the following conditions are fulfilled.

(C'1) The functions @j : @1 IIB?”_H x LP(0, T ‘) _"IR (@ =0. 1: -+ 1) satisfy the Carathéodory conditions
for arbitrary fixed # € L7(0.121V) and b : (0.17) x 0Q x LP(0.1: V) — ] js measurable for each fixed
e LP0,15V)

(C2) There exist (nonlinear) operators g1 : LP(0, 73 V) — RF gng k1« LP(0.1: V) — L9(Q7) such that
laj(t.z. . Gu)| < gr(u)[L+ 9P~ + [¢PH] + [Ra(u)] (£, @)

forae. (t- ) € Q7 each(n.¢) € B"*! we LP(0. 15 V) where

|g1(u)| < const [1+ |[ullreorar] -
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|1 ()] Lo, ) = const |:1 + ||rr.||;,;-.;:[]_7~-_l.--;.:|q

and the constants o™ 7 satisfy 0 < ¢” <p—1 0 <o <p— "

(73) The inequality
Z[fu(aﬁ. oo, Gou) —ag(t, oon, )& — &)= [g2(u)] ()] — |7
i=1

holds where the operator g2 satisfies

[g2(u)](t) = ¢ [1+ [[ull Loo.iv] 7
and * is some positive constant.

(€74) The inequality

Equation 2.89. (10.38)

n

Z a;j(t.z.n. Gu)l; = [ga(u)] )L+ |q”+ [|7] — [k2(u)](t, x)

holds where F2(u) € L' (Q7) satisfies for all t € [0. 1]

Equation 2.90. (10.39)
|2 (u)ll Lt () < comst [1+ Jull Looeny]” . w € LFO.T:V).

Further, forall ¢ € [0. 7] u € L7(0. 7% V')

Equation 2.91. (10.40)
a—1
At 2z )l Lago.xan) < const [1+ [[ullLe@eny]” -
- l.p
(In the case V' = Wo (22 is considered to be identically 0.)

(C5) There exists 4 = 0 satisfying © < 1 = 1/p such that if (#x) —  weakly in L”(0. 13 V) and strongly in
L7(0, 75 W=32(Q)) (1) = 7in &, (¢*) = Cin B then for a.a, (- @) € @7, j = 0.1,....n

L_lim aj(t. o g Frug) = ajlt, e, Gou)

for a subsequence and for a.a. t € (0. 1), & € 90
.r.-lim hit, oiug) = hit, oou)

for a suitable subsequence.

Theorem 10.9.

Assume (C1) — (€5). Then A : L2(0. 13 V) — L*(0. 73 V") js bounded, demicontinuous,

pseudomonotone with respect to W (0. 15V H) ang coercive in the sense of Theorem 9.6.
L ] e Tk F4 - / 1 . r . .

Thus for any ¥ € LY (0. 75 V*) ug € L* () there exists * € W5 (0: 13 V. H) gatisfying

Equation 2.92. (10.41)
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w + Afu) = F, u(0) = up.

Proof.

Clearly, (€1), (€2) and (10.40) imply that A is bounded, because the trace operator
WH=P(Q) — LP(09) is pounded if -+ 1/p < 1 (see Remark 4.2) and so by Hoélder’s
inequality for all v € 17

1/q
| At riu)vde,| < |:f |A(t, x: u)|”’ﬁ‘m_} - const|| || -sea)
ily! a0 o

hence by (10.40)

Equation 2.93. (10.42)

-
|f |:f h(t, o H.)t‘ff(J'J_-i| dt| <
1] el

1
const [1+ [[ullroran]” [oleromn-

Further, by using (1), (€2), (€5), (10.40), Holder’s inequality and Vitali’s theorem
(Theorem 4.3) one obtains that A is demicontinuous. Assumptions (2), ('4) imply that A is
coercive in the sense of Theorem 9.6, because (for sufficiently large [[ue] LP(0,T:V7))

[Alu). u] — el Al Lo 0.7+

p—1—a"
||”-||:.a-u:ju.7‘-.'|-'j- ]

e
Z [L+ [lull ooy

—1
const [1+ Jull Leoroy]” — +ox
as lull e vy = Xgince p— 6* > o,

Now }/ve show (similarly to the proof of Theorem 4.15) that A is pseudomonotone with respect
to Wp (0: 15V H) Assume that

Equation 2.94. (10.43)

(ug) = uw weakly in L7(0, 1% V),

Equation 2.95. (10.44)

(uf) — v’ weakly in L7(0, 75 V") and

Equation 2.96. (10.45)
litn sup|A(wg ), we — 1] < 0.

E—oc

Since W'P(2) is compactly imbedded into W' ""(£2) (for bounded © with“sufficiently
good” boundary, see Remark 4.2), by Theorem 10.1 there is a subsequence of(tx), again
denoted by (%), for simplicity, such that

Equation 2.97. (10.46)
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(ug) = u in LP(0. 7: W' =*P(0)) and a.e. in Qr.

Further, since the trace operator W' "7(2) — L”(89) s continuous, the sequence of
functions

Equation 2.98. (10.47)
(t,x) —ug(t, o). (t,o) € (0,77 x € converges to
(tox) = ult.x), (o) € (0,1) % a9 in LP((0, 1) x 5Q).

Since (2ju) is bounded in L7 (@7 ), we may assume (on the subsequence) that

Equation 2.99. (10.48)
(Djur) = Dju weakly in LP(Qr). 7=1,...n.

Further,

Equation 2.100. (10.49)

[Alug), wup — u] = f ag(t, o, g, Dugs ) (ug — u)didr+
Qo

vy

Zf [ (t, o, wg, Dugs ug) — aj(t, o, g, Dug ug)| (Djug — Dju)dtdo+
i=1 oy

ZJ a;(t, o, ug, D rr.;,-:l(D_J;rr.,r,-—D_J;rr.]n‘tff:r—I—f At o) (up—u)dido,.
j=170r

(0. T)=a0
The first term on the right-hand side of (10.49) tends to 0 by (10.46) and Holder’s inequality,
because the multiplier of (t+ — ) is bounded in L“ (€27). Further, the third term on the right-

hand side converges to (1, too, by (10.48) because (10.43), (10.46), (C1), (C2), (C5) and
Vitali’s theorem imply that

ajlt, o, wp, Dusug) — aj(t, o, u, Duyu) in L9(Qr).

The last term on the right-hand side of (10.49) tends to 0, too, by Holder’s inequality, (10.47)
and (10.40).

Consequently, (10.45), (10.49) imply

Equation 2.101. (10.50)

T
]iIIlHH]:*Zf |f3_j(f. T, ug, Dugsug)—aj(t, o, up, Du; ui.]ll:f}'ju;,.— Dju)dtdr < 0,
0,

k— e j=1v6

Since (%) is bounded in £”(0. 13 V), from (C3), (10.50) we obtain

Equation 2.102. (10.51)

lim f | Dty — D |Pdtde = 0
U

E—oc
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and (for a subsequence)

Equation 2.103. (10.52)
(Dug) — Du ae. in Qp.

Therefore, by (C1), (C2), (C5), (10.40), (10.43), (10.46), (10.52) and Vitali’s theorem
(Theorem 4.3)

ajlt, oo Dugyug) = ag(t, oow, Duzu) in L9(Qr), §=0,1,...n,
At o) — Bt wiu) in L((0,17) x 09Q).

Thus by Holder’s inequality and Vitali’s theorem

Equation 2.104. (10.53)
(Alug)) = Alu) weakly in L0, 73 1V7).

Finally, from (10.46), (10.49), (10.51) and (€'2) one gets

Equation 2.105. (10.54)

.r,-lim [Alug), g —u] = 0.

Since (10.53), (10.54) hold for a subsequence of (&), by Cantor’s trick we obtain (10.53),
(10.54) for the original sequence.

So we have proved that A is bounded, demicontinuous, pseudomonotone with respect to
W (0.1 V. H) gng coercive, thus Theorem 9.6 implies Theorem 10.9. o

Remark 10.10.

According to the proof of Theorem 10.9, (C'1) — (€'5) imply that A belongs to the class (5)+
with respect to Wo 0. 12 V. H), i.e.

(wr) = w weakly in ZP(0. 11 V7).,  (u}) — w' weakly in L9(0, 13 V™),

litn sup[A(ug), g — u] < 0 imply (ug) — w in LP{0, 15 V).

k— o

(See (10.51).)

Remark 10.11.

In the case of “non-local” operator A one may consider the following modified problem
(instead of (10.41)) which is a generalization of the standard Cauchy problem for functional
differential equations (delay equations) in one variable:

Equation 2.106. (10.55)

i'(t) 4+ A(t. i) = F(t) for a.a. t € (0,77,

Equation 2.107. (10.56)
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i(t) =(t) for a.a. t € [—a,0)

where ii¢ is defined by

Equation 2.108. (10.57)
fe(s) =t +s). s€&[-a 0, t=0

Here v € L(—a. 0: V) #"€ L9(0. 12 V") are given functions and we want to find a function
i € LP(—a. 13 V) such that 4" € L7(0. 72 V") and 4 satisfies (10.55), (10.56). The operator

A:(0.7) % LP(—a.0: V) — LU(0.T: V")

is defined by

Equation 2.109. (10.58)

[_‘{(f I"I'..l)‘ f‘] =

f {Zu.;(t. r, Dz ug)Dye + aglt, o, ow, Di Fw)t‘} dtdr,
tdy 4=1

where © € L7(0. 7 V) and the functions

aj:Qr x B [P (—a, 0:V) = R

satisfy conditions which are analogous to (C1) — (C5), with £7(—a.0: V) instead of
LP(0,7: V) and LP(—a. 0: W=32(Q)) instead of LP(0. 1 W=}

Problem (10.55), (10.56) can be reduced to problem of the form (10.41), in the case when

€ LP(—a. 0: V) satisfies ' € L(—a.0:V™) Indeed, assume that # € L¥(—a.1:V)
satisfies (10.55), (10.56) such that i’ € L (—a.T: V™) and define « and i by

Equation 2.110. (10.59)

u(t) = ii(t) for ¢t € (0.1).

Equation 2.111. (10.60)
i(t) = u(t) for + € (0,1") and @ (t) = ¢ (t) for t € (—a, 0).

Further, define operator 4 : L7(0. 12V} — L9{0. 12 V") py

Equation 2.112. (10.61)
[A(w)](t) = A(t. i,). we LP(0.1:V)

where i is defined by (10.60). Since for @ € L”(=a.1:V) we have i’ € LY (—a. 12 V"),
function u € L”(0.1:V) defined by (10.59) satisfies

Equation 2.113. (10.62)
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(8] + [A)](t) = F(t). t(0.7)

Equation 2.114. (10.63)

u(0) = :(0).

Conversely, if u € L7(0. 1 V) satisfies (10.62), (10.63) then i1, defined by

i) =u(t), te (0.7), dlt) =), te(—a.0)

satisfies (10.55), (10.56) and i € LP(—a. 13 V) i" € L9 (—a. T V"),

Further, if the functions @i in (10.58) satisfy the above mentioned conditions (which are
analogous to (1) — (€7'5)), then the functions defining operator A by (10.61), satisfy (<'1) — (

C'5)). Consequegtly, by Theorem 10.9 we obtain existence of solutions of (10.62), (10.63)
(since ¥(0) € L7(£2)) which implies the existence of solutions to (10.55), (10.56).

Example 10.12.

Now we formulate examples satisfying (€'1) — (C'5)), i.e. assumptions of Theorem 10.9. Let a:
have the form

aj(t.o.n. Gu) = btz [H(w)](t. )& P2 j=1.....n.
aolt. x.n. G u) = by (t, z. [Ho(w)](t. £))n|n|P~2 + bo(t. x. [Fo(u)](t. 2))éo(t. x.1. )
where b. bo. b, &0 are Carathéodory functions and they satisfy

)

W const = by(t, o, #) =

)]

const = bit, o, &) = W
with some positive constants czand 0 = ¢ < p— 1,

lbo(t, 2. &) < 1+ |8)P17¢ with 0 < p* < p— 1 and

laa(t, 2, m, O] < e (1 + |8+ €7

with some constants c1, @ = 0 @™ + g < p”,

Finally,

H, Hy: LP(0,7: WY52(Q0)) = C(Qr).  Fo: LP(0, T W32(Q)) — LP(Qr ).

are linear and continuous operators. Thus, [ ()] (%, =) and [Ho(u)](t. ) may have one of the
forms

f d(t, x, 7, &)u(r, £)drds where d is continuous in (t, x),
€

sup f |d(t, x. 7.&)|TdTdE < 0o,
Ly

(Ex)edy

f d(t, x, 7, &)u(r. &)drde: where d is continuous in (¢, r),
Ty

sup f |d(t, x, 7.8)|"drdoe < oo, 'y = [0,1) x O
Ty

(t.r)edy
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To prove that examples of the above type satisfy the conditions (C'1) — (C5)), we apply similar
arguments as in Example 4.19.

Clearly, assumptions (C'1), (€'3), (C'5) hold. In order to show (C'2), we only have to show that
the second term in @ (f. . 7. (1) satisfies the desired inequality. By Young’s inequality we
obtain

|ba(t. . [Fo(u)](t. x))éa(t. 2. 7. O] < [1+ [Fo(u)P 12 er (14 |9]2 4 [¢|2) <
const (1 + |n]? +|¢|2)P* + const[1 + |Fp(u)|P—1-e" o]

where

1— 1 | 1— 1
j _ 1 — = 1l and q = L —.
0 m—1 p—1—5

Consequently, we obtain for this term (C'2) with
Fy (1) = const[1 + |_¢‘-<'[](”_)|':JJ—1—{_J':lrrl ]

since by Holder’s inequality we have for this term

f |k1(u)|*dtdr = CDIlHtf [1+ |Fo(u)| Pt nd)gedr <

Qo g

e
const |:1 + 1; |1;U|:”.)|J‘fa‘tff:r] < const [1 + ||fr.||'£h:n_7.__,|_.:l}
v

where

1—1— "
p=p-—1-p")ng= Pm-"8 v<p
p—1—2p

Now we prove that (¢74) is satisfied. Clearly, for our example we have in (10.38)

[g2(u)](t) = min {

const const

1+ ||H(n.)||:,’_,'{m}' L+ (| Ho (Wl Zgmy |~
const [1+ [[uflLooray]

Further, by Young’s inequality

|bo(t, @ [Folw)] (£, 2)an (b 0. On| <

1+ “*.[J(”-)V‘_l_E-]{;onst.(l + |”|L‘*+l + |C-|£J+1) <
;

— (1 |n|P" 4 €] + Cle)[1 + |Fo(u)|P1-e o
yu

for any £ > 0 (because £ + 1 <P — &) where

m p—a” p—a”

qa = = —. p1= = ;
1 m—1 p—a—-—p—1 f o+1

and € (£} is a constant depending on =. Choosing sufficiently small = = 0, we obtain (C'4) with
[ka(w)](t. ) = C(e)[1 4 |Fo(u)|P—1-2" )]

since
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Ez{w)l| Lt e,y = COIIHt.f 1+ |1~'[](rr.]|'il‘—l—LJ':'fn] =
o (-8

constf [1_|_ |_!".[](H.)|I:J1_q':|)‘] 5
(-8

. (p—a™ 1A (p—a™ 1A
const [1 I E e, } < const [1 + ””‘”}f;-.:';_azu"—5-4--:'52‘-\] =
o . *
const |:1 + ||fr.||;,;-.;:[]_,._|,.-:,] with & = (p — o™ )A where

p—1—p*
= ————— < 1. because
p—1—0o*—3g

g+ < p” and thus (p— " )A <p— ",

If the functions b. &0 are between two positive constants, then, it is not difficult to show that (
1) — (C'5) are fulfilled when

H, Hy: LP(0, T, W=5P(Q)) — LP(Qr)

are continuous linear operators (like £t). So in this case [ (u)](t. =), [Ho(u)](t. =) (and also
[Fo(u)](t, )) may have also the forms

!
f dit, o, T)ulr, x)dr, f dit, o, &)ult, £)dE
i 0

where

3

T T r
f sup f |d(t. x. 7)|"dT dt < o, / sup
0 =xeil 0 2 ie[0,7T)

»ia
|d(t, x. & 'J|"'|f£j| dx < o,

0
respectively, or
u(x(t). r) where y € CH0,7]. ' =0, 0<y(t) <t

5.3. Problems

1.

Prove Remark 10.5.

Prove Remark 10.10.

Show that if the functions @ satisfy (31), (32), (53), (I34) and there is wo € WP(€2) such that wolaa = g
then there is a weak solution u = # + uqn of the initial-boundary value problem with nonhomogeneous
boundary condition, formulated in Problem 4 of Section 8 (where to(t. ) = wa(:r)),

Let V = Wi""(Q) where m = 1.p=2 and @ C B* is a bounded domain with sufficiently smooth
boundary. Consider the operator A defined by

-
[A(u), v] =f[] (A [w(t)]. v(t))dt =
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T
f f Z (D™ u)| D"u|P~2D" v | dx } di+
0 3!

| ex] =am

-
f f Z aglt.x..... D%, .. )D%v | dx 3 dt. |3 < m.
0 0

_|u|-:ijm

u. v € LP(0. 72 V) where the functions a. (| < ™) satisfy the Carathéodory conditions and there exist a
constant c1 > 0 and k1 € L7(€2) such that

laa(t. =, &) < 1§77 + ka(x) for £ € RY, am. x € Q.
Further,

o (t, 0. &) = 0 for £ eBY, an. x € Q.

(See the notations in Problem 5 in Section 4.)

By using the arguments of the proof of Theorem 10.4, show that for arbitrary £ € L9(0, 1 V*) ug € L*(2)
there exists a solution « of problem (7.1).

6. 11 Existence of solutions for +e©.x)

In this section we shall prove existence of solutions to nonlinear evolution equations in infinite time horizon.
These results will be applied to nonlinear parabolic differential equations and functional parabolic equations
which were considered in Sections 8 and 10.

First we formulate some basic definitions.

Definition 11.1.

Let ¥ be a Banach space, 1 <p < . The set Lin(0: V) consists of all functions
f:(0,5¢) = V for which the restriction /(0.7 of £ to (0. ') belongs to £”(0. 7 V') for each
finite 1" = 0.

Further, by using the notations @= = (0. 5¢) % @ I'c = (0.5¢) % 2 denote by Lin.(@x)

and Lioe(l'<) the set of functions f: @ — % and 9: I'x — &, respectively, for which
fla, € L7(Qr1), glr, € LP('r) for arbitrary finite 7" > 0.

First we consider the case when -4?{::“-(”‘*1") — Ly, (0500 V¥) s “local”, ie. it has the form
[Alu)](t) = [A(#)][w(#)] where for fixed ¢, A(*) maps V" into 17*,

Theorem 11.2.

Let VV.C H C V" be an evolution triple, 1< p< o0, Assume that for almost all ¢ = 0,
Aft) : V = V* s such that operator A Lin.(0.00:V) — Ly, (0.2¢:V*)  defined by

[Aw)](t) = [AB)][u(t)] satisfies the assumptions of Theorems 7.1, 9.2, respectively for each
fixed 1" = 0,

Then for any ¥ € L. (0.0 V) and up € H there exists € Line(0:5:V) sych that
u'€ LY (0, 00; V)

o

Equation 2.115. (11.1)

w'(£) + [A()](#) = Ft) for a.a. t € (0,00),  u(0) = up.
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In the case when the conditions of Theorem 7.1 are fulfilled (monotone case), the solution of
(11.1) is unique.

Proof.
Let (1) be an increasing sequence of positive numbers with lim(1j) = +2¢ Due to

Theorems 7.1, 9.2, respectively, there exist 4 € L”(0. 75 V) such that 45 € £L9(0.15: V")
and

Equation 2.116. (11.2)
wli(t) + [Alu)] () = F(t) for aa. € [0.T5]. u;(0) = up.

The coercivity assumptions (7.3), (9.6), respectively, imply that for all fixed 1" > 0 (and
sufficiently large 7) “il10.75] is bounded in £7(0. 1 V), The (boundedness) assumptions (7.2),
(9.5) imply that [4(%i)]110.7;1 is bounded in £(0. 7 V*) for all fixed finite 7' > 0.

Therefore, by using a “diagonal process”, one can select a subsequence of (i3] (again denoted
by (u3), for simplicity) such that for each fixed il is weakly convergent in

L7(0, T3: V) and the sequence ;0.7 is weakly convergent in £9(0. Th: V*) as j — ¢, Thus
we obtain a function % € Li,.(0. 5¢: V) gych that 4" € Ly, (0, 001 V*) u(0) = up, further, for

each fixed %

Equation 2.117. (11.3)

(uiln.1y) — vlom, weakly in LP(0, Ty V),

Equation 2.118. (11.4)

(o) —+ v'|jo.7y weakly in L7(0, Ty: V).

Thus, similarly to the proof of (7.16) (see Lemma 7.3), one obtains (0} = o (by using
u;(0) = ua), Further, by (11.2) for j = k

Equation 2.119. (11.5)
wl(t) + [Alu;)] () = F(t) for a.a. t € [0.T%].  u;(0) = up.

thus by Remark 6.7 and (11.4)

T
f (A, ui(8) — w(t))dt =
0
The The
f {E(), i (8) —wlt))dt — f ::rr.':;l:t:], wilt) — w(t))dt =
0 0 '
The 1 o
| w0 = wtnae = Sy (1)~ utolfy +
0 2

T
f (' (), wi(8) — w(t))dt,
0

hence

84
XMLmind XSL-FO Converter



FIRST ORDER EVOLUTION
EQUATIONS

T
11111:-«'111}] {[A(u; (), wy (8) — w(E)hdt < 0.

J—+oe 0

Since for fixed kA is pseudomonotone with respect to W, (0,73 V. H) (as operator from
70, 1% V)into L9(0, 1 ‘I’*)),

(Al ) = Alu) weakly in L0, 15 V™)

and so from (11.4), (11.5) we obtain as j — o that (11.1) holds for a.a. t € [0. 73] Since it
holds for all & and litnk s 13 = +5¢, we obtain (11.1) for a.a. t € (0. ),

In the case when the conditions of Theorem 7.1 are fulfilled (monotone case), . is unique for
all 7 and thus the solution « of (11.1) is unique, too. (The restriction of a solution in (¥- ) to
(0. 1) satisfies the initial value problem in (0. %)) o

Now we consider the case when operator A is “non-local”, i.e.[4(u)](t) depends not only on (t). Then is is
important to assume that A has the “Volterra property”.

Definition 11.3.

An operator A 1 Li,, (0. 0c: V) — Ly (0.5¢:V*) s of Volterra type (it has the Volterra
property) if for each * € Li,.(0.5¢: V) and ¢ = 0, [A(w)](*) depends only on *l(v.0), i.e. the
restriction of « to (0. £),

1f A L. (0.00: V) = Li, (0. 5¢: V) s of Volterra type, then the “restriction of A to[0: 77,
denoted by Ar, is the operator A7 : L¥(0. 1 V) — L9(0. 72 V*) defined by

Ar(u) = Alur), u€ LP(0.1;V) where

ur(t) = u(t) for t € [0,7] and ur(t) =0 fort = 1.

Theorem 11.4.

Let the operator A Li,.(0.0c: V) — Ly, (0.0¢:V*) he an operator of Volterra type such

that for each finite 1" > 0, the restriction of A to [0. 7] A7 : LP(0.7:V) — L7(0. 72 V")
satisfies the assumptions of Theorem 9.6, i.e. it is bounded, demicontinuous, pseudomonotone

with respect to W 0.5V H) ang it is coercive in the sense of Theorem 9.6.

Then for arbitrary ¥ € Lin.(0.00: V) uy € H there exists * € Li,.(0.5:V) such that
u' € LT (0, 5: V) and

Equation 2.120. (11.6)

w'(£) + [A()](#) = Ft) for a.a. t € (0,00),  u(0) = up.

Proof.

Similarly to the proof of Theorem 11.2, let (Z) be an increasing sequence of positive numbers

with lim(1;) = +2¢_ Due to Theorem 9.6 there exist functions u; € L”(0.1: V) such that
u' € L0, T5: V*) and

w’(t) + [Ar, (u)](t) = F(t) for a.e. t€ [0.15].  u;(0) = uo.

The Volterra property implies that * = ujl[0.7] satisfies

Equation 2.121. (11.7)
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v'(t) + [Ar, (v)](t) = F(t) for a.a. t € (0.1}

if L& < 1}, Coercivity of Ar implies that for all fixed finite 7" > 0 (and sufficiently large ),
uil[o.m is bounded in L7 (0. 1+ V). From the boundedness of Ar it follows that A7 (11ilj0.7)) is
bounded in L7(0. 1 V™),

Therefore, by a “diagonal process”, one can select a subsequence of (1j) (again denoted by
(1)) such that for each fixed #,

(ujlfo.7,) is weakly convergent in L¥(0.1%: V') and
(ul]fo.7y) is weakly convergent in L7(0. Ty V*) as j — oc.

Thus we obtain a function # € Li,.(0.5¢: V) sych that ' € Li,,..(0. 21 V*) | By using the
arguments of the proof of (7.16) (see Lemma 7.3), we obtain ©(0) = uo, Further,

Equation 2.122. (11.8)

(wilfo.7) = ulo.7y weakly in LP(0,13: V') and

Equation 2.123. (11.9)
[:H._'H[[]_TH) — fr.’|[[]_7-k| weakly in LP(0, 15 V™) as j — oo,

Since by (11.7)

Equation 2.124. (11.10)
w’i(t) + [Ar, (ug)](t) = £(t) for aa. ¢ € [0, Tk, u;(0) = wuo.

by Remark 6.7

Ty
| dan e us ) = u(eya -

1]

The The
f {F(), i (t) —ult)dt — f {u} (), uj(t) — u(t)ydt =
0 '

1]

The
f {F() i (t) — wlt)pdi—

1]

1 The
i) = (Tl + [ o). us(6) = ity
= ]

hence

Equation 2.125. (11.11)

T
111115111}] {[Ar, ()] (), i (t) — u(®))dt < 0.

J—+oe 0

Since (for fixed k) Am. : L7(0. T5: V) — L*(0. T%: V") is pseudomonotone with respect to
Wp(0.1:1 -H), the inequality (11.11), (11.8), (11.9) imply that
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(A7, (u;)) = A, (u) weakly in L0, 13 V™) as j — oo,

Thus from (11.10) we obtain as 7 — ¢

Equation 2.126. (11.12)
w'(t) + [Ap, (w)](t) = F(t) for a.a. t € [0, T3], u(0) = ug,
(11.12) holds for all i, so we have (11.6). o

Now we apply Theorem 11.2 to operators of the form (8.1) where 1" is a closed linear subspace of Wwhr(Q),
2 < p< o0, 0 B"is a bounded domain with “sufficiently good” boundary, H = L=(£2),

Assume that
(B 1) Functions @ ¢ @ % B""" — R (j = 1..... n) satisfy the Carathéodory conditions.

(B2) There exist a constant e and a function 1 € Lo (@) (1/p + 1/4 = 1) such that for a.a. (1. =) € @,
all § e R
la;(t. x, &) < e |f||"_1 + E1(t. x).

(B3) Foraa. (t: 7] € Qx all £.&% € B

Z[u_;(t, o, &) —aj(t. o, )& — &) = 0.

(B..1) There exist a constant c2 > 0, k2 € Lj,,.(Qx ) such that for a.e. (f: ¥) € @, all £ € B!

n

Z aj(t, . £)E = eal&|” — kalt, ).

>From Theorems 7.1, 11.2 directly follows

Theorem 11.5.

Assume (Bucl) — (B4). Then for all £ € Lj, (0.5 V) ug € L*(£2) there is a unique
w € Ly, (0.0 V) sych that %' € Lis,. (0. 20: V) and

loe

Equation 2.127. (11.13)
w' () + [A)](t) = £(t) for a.a te (0.00), u(0) =ug
with the operator (8.1).

Instead of ({2 3) assume

(B 3) There exists a constant ¢ > 0 such that for a.a. (f: 7) € Qs alln € B (. ¢* € R”

Z[fu(aﬁ. oo, C) —ajt,x g, (& — ._‘,f) =éc—

=1

>From Theorems 10.4, 11.2 one obtains

Theorem 11.6.
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Assume (T (B2 (F33) (B=<4). Then for all £ € Ly, (0, 561 V7) un € L2(<) there is
a solution of (11.13) with the operator (8.1).

If instead of (£-3) we assume

(B3 Foraa. (t.7) € Qc alln €R ( * eR® (# "
i[”.j(?ﬁ- w1, ) — ajlt. o, (&G — &) =0
i=1
we obtain from Theorems 10.6, 11.2
Theorem 11.7.

Assume (Ba1), (Bx2), (B3 (Bacd). Then for all £ € Ly, (0. 50 V*) wy € L*(Q) there is
a solution " € Li,.(0. 501 V) of (11.13) with the operator (8.1).

Remark 11.8.

- l.p
If V= Wy () and 2 is bounded then instead of (B4) it is sufficient to assume

(B4 Forae. (t:7) € Qu all £ = (7. () e R
Z a_j(t, T, .:f:].f‘f > f-_2|c'|aa — kalt. ”,,)
i=0

with some constant ez > 0, k2 € Lj, (@), (See Remarks 3.9, 4.11.)

Now we apply Theorem 11.4 to operators of the form (10.37) (see Definition 10.8) where 17 is a closed linear
subspace of W' 7(2) 2 < p < a0 © B™ is a bounded domain (with sufficiently smooth boundary).

Theorem 11.9.
Assume that the functions
aj: Qo x B s LP (0.00: V) =R, j=0.1,...m

have the Volterra property , i.e. for all ¢ = 0, a;j(t. . 7. (z 1) depends only on the restriction
ulwn of w to (0.f) . Further, for all finite 7°>0 , the restrictions of @i to
Qr = B LP(0, 15 V) satisfy (C'1) — (C5), i.e. assumptions of Theorem 10.9.

Then for arbitrary £ € Li,.(0. 51 V) un € L2 () there exists a function € Li,,.(0. 5c: V)
such that #' € Li,.(0. 51 V*) and (11.6) holds with the operator A of the form (10.37) with
h =0, i.e. when A is defined by

Equation 2.128. (11.14)
{{A(w)](#), w) =

T

f E cag(t, e u, Duyu)Dyw 4+ ao(f, o, u, Dusu)w | dr,
a |5
i=1

where © € Li, (0.5¢: V) 4 e v,

6.1. Problems
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Prove Theorem 11.5.
Prove Theorem 11.6.
Prove Remark 11.8.

Consider the functions

o Qe BB, j=01,..., n

which satisfy the conditions of Problem 1 in Section 8 for all £ € (0. o) with the same constants. Prove that

there exists a unique solution of problem (11.1) with the operator -i(?f) defined by functions i in Problem 1
of Section 8.

Formulate and prove an existence and uniqueness theorem for the solution of (11.1) where the operator -“:(?f)
is defined in Problem 3 of Section 8.

Formulate and prove an existence and uniqueness theorem for the solution of (11.1) where the operator -“:(?f)
is defined in Problem 6 of Section 8.

Formulate and prove an existence theorem for the solution of (11.1) where the operator =5-(¢) is defined in
Problem 4 of Section 10.

7. 12 Qualitative properties of the solutions

7.1. Boundedness of solutions

First we formulate and prove theorems on the boundedness of || (t][[#, £ € (0. o) for the solutions « of (11.1)
and (11.6).

Theorem 12.1.
Assume that the operator 4 * Li, (0. 501 V) — Lit, (0. 501 V*) js given by
[A(u)](#) = [A(®)][w ()] with A(t) : V — V*

and the assumptions of Theorem 11.2 are fulfilled such that for a.a. t € (0. 2¢) + € V

Equation 2.129. (12.1)

([AD] (), v) = eale||l — ka(t) where ko € L™ (0, o0)
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(i . ((thec functibhahE 1n(((9:6) 1i8 Jessentially bounded) and [[#'(t)[|v+ is bounded for a.e.
, e .

Then for a solution u of (11.1), ll%(£)l[## is bounded for ¢ € (0. 5¢), so u € L> (0. oc: H) and

Equation 2.130. (12.2)
Tz

f [l ()5 dt < es(Ta —T1) for 0 < 17 < 1
T

with some constant ¢3 (not depending on 1. 13),

Proof.

Let u be a solution of (11.1) and ¥(t) = lu(®)lF. Then by (11.1), (12.1) and Young’s
inequality for arbitrary = > 0

{u(£), ult)y + t:[‘{(a‘]][rr(a‘]] wl(t)) = (EF(t). ult)),

hence

Equation 2.131. (12.3)

(w'(). u(®)) + c2llu I = k2(t) < IE@v-Ju)lv <
ellu®IF + CEIFBI .

Since by Remark 6.7

T2 i i 1 Bl 2 g 2
(' (@), u(thdt = S{lu(@2)5 — w0,
T =

choosing sufficiently small £ = 0 and integrating (12.3) with respect to # over [11: 72|, we
obtain

Equation 2.132. (12.4)

1 . S b Tz ,
Sl — )+ 2 [ ol <

T
Ta Ta
f ka(t)dt + ey f | F @)Y .dt < es (12— TY).
T T

Since the imbedding V"  H is continuous,

y(t) = lu(®)F < const]u(t)[}

thus (12.4) implies

Equation 2.133. (12.5)
Ts "

y(ds) —ylly) +¢* f [y “dt < 2e5(15 — 1Y)
Ty

with some positive constant «*.
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We show that the inequality (12.5) implies that ¥(f) is bounded font € (0. 2}, 4ndeed,
agsanfiingithat the (continuous) function is not bounded, for any there are and
such that

ylt) = hllhllnlc y = M.

Since ¥ is continuous, there is & = 0 such that
ylt) = Mift) — 8 < t < ty.

hence by (12.5)

ylt) —yltr — ) + FAMPI2 < 2§

which is impossible for all A = 0, because ¥(t1) — y({t1 — 4} = Oand p > 1. Finally, from
(12.4) and the boundedness of ¥(t) we obtain (12.2). o

Theorem 12.2.
Assume that the conditions of Theorem 11.4 are fulfilled such that for a.a. f € (0.5¢),
v € L (0, 50; V) with v € LY (0, 50: V*)

(ADIe O] v (1)) = callo®F —ea | sup [l + () sup lo ()% +1

T []_.'| T |

holds where cz2. 3 = {}! 0 < p1 < p are constants, ¥ = U is a function with the property
limae = 0, Further, [[£(t)[ v+ is bounded for a.a. t € (0. 2],

Then for a solution « of (11.6) (with arbitrary initial condition), [[#(£)l[# is bounded for
t € (0.5¢) and (12.2) holds.

Proof.

Similarly to the proof of Theorem 12.1, we have for a solution of (11.6)

(' (t). ult)) + cz|lult)|]}: —es | sup |ul(r)||f + (t) sup [u(r)]}, +1| <
1.t

Te[0. =
ellu®IF + CENFDI -

Choosing sufficiently small = > 0 and integrating over |41 12|, by Remark 6.7 we obtain

Equation 2.134. (12.6)

1 - - 2 T2 ,
Sl (T2)l[F — [l (T0)I1F] + ;f [l ()]t <

T

dt

T2
€3 f sup ™% + w(t) sup gt
Ty | [0.] [0,1]

with some constant & = 0. Since y(#) < const [[u(£)[[$-, we obtain from (12.6)

Equation 2.135. (12.7)
Tz

y(Ta) — y(11) + ¢* f (6] 2dt <

Ty
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T:
2¢5 f supyPt/2 + () sup yP 2 + 1| dt
T [0.1] [0.4]

with some positive constant *. We show that (12.7) implies the boundedness of ¥.

Assume that #(t) is not bounded. Then for any M = 0 there are to > 0 and t1 € [0. ta] such
that

M+1Z2yt)=supy > M
[0.8g]

As ¥ is continuous, there is a 8 = 0 such that
y(t) > Mifty —8 <t <ty
Hence by (12.7)

y(t) — ylts — &)+ aMP? <

ty

s | B(M + 172 (1) f

f—d

w(t)dt + (5:|

which is impossible for all A = 0 because ¥(t1) — y(t1 — &) = 0, p1 < p and limac =0,
From the boundedness of ¥(*) and (12.6) we obtain (12.2). o

Now consider the case when 17 is a closed linear subspace of W' ”(€2) 2 < p < oc, H = L*(£), Similarly to the
proof of Theorem 12.2, one proves

Theorem 12.3.

Assume that the conditions of Theorem 11.9 are fulfilled such that for all for a.a. € (0. 5¢),
3 - r ! ] N Ed
v € Li,, (0. 500 V) with ©” € Ly, .(0. 51 V™) the inequalities

Equation 2.136. (12.8)

[g2()](t) = const

14+ sup ||c‘('.")||;,z,::_;:,1 .

T [0.4]

Equation 2.137. (12.9)
f[ﬂ:g(t‘)](t. x)dr =
0

const

1+ sup [[o(n)|Zz(q) +@(E) sup ||f‘(-*)||’;‘.;.iz*.]
) T [0.4] s

T [0.4]

hold with some constants, 0 <" < p—1 1< o <p—a* lime =0 and [[£'(t)]v - is
bounded for a.e. t € (0. 2¢),

Then for a solution « of (11.6) with operator A given by

Equation 2.138. (12.10)

‘:[-4-(”-:1](?3). wh =

92
XMLmind XSL-FO Converter



FIRST ORDER EVOLUTION
EQUATIONS

f {Z a;(t, z o u, Duru)Dyw + ag (b, oow, Duzu)w| dr,
0

i=1
we L (0.0c: V), wel,
|2 (#)]|# is bounded for £ € (0. <) and (12.2) holds.

7.2. Stabilization of the solutions

Now we shall formulate conditions which imply results on the stabilization of solutions « to (11.6) ast — oc.
First consider operators defined by

Equation 2.139. (12.11)
[A(w)](t) = [_-i(af)][fr.(t)] where _-i(af) V=V

is defined for all ¢ = 0.

Theorem 12.4.

Assume that the operator A(t) : VV — V7 satisfies the conditions of Theorem 7.1 for all ¢ = 0
such that for any v.w € V

Equation 2.140. (12.12)

::[‘il:f:]](t:] — [i(a‘]](u) v—w) = eallv — wl|} + ea]jv — u-'||%;

with some constants ¢2 > 0.3 = 0, (In this case Alt) js uniformly monotone, see Definition
2.15.) Further, there exist A~ : V" — V*and £’ € V*, a continuous function & with the

property limn.. ® = 0 and for all 12 > 0 there is a positive number ¢z such that for all v £ 17
with[[v]lv £ 12 ¢ = 0 we have

Equation 2.141. (12.13)
IAB] () — Asc (0)[[v+ < cn®(t) and |[F(t) — Fallv- < ®(t).

Then for a solution « of (11.1) with operator A of the form (12.11) we have

Equation 2.142. (12.14)

T4a
lim |[u(t) — tee|lp =0,  lim f ity — o ||{-dt =0
foree T Jr_y

for arbitrary fixed a = 0 where t= € V is the unique solution to

Equation 2.143. (12.15)
A (o) = Fie.

If

Equation 2.144. (12.16)

93
XMLmind XSL-FO Converter



FIRST ORDER EVOLUTION
EQUATIONS

f B () dt <

1]

is satisfied, too, then we have

Equation 2.145. (12.17)

> >
f lu(t) — wac|l}-dt < . f
0 0

Further, if e3 = 0,

w(t) — o |3 dt < .
H

Equation 2.146. (12.18)

=
f 2 () — wio || 3y et <
i

T ='
const {c:_“"" +f [c_“'":--r_’:'f 'I(T)”'ﬁ"."} ﬁ‘t}
i '

holds with some constant 7 = 0.

Proof.

By (7.2), (12.12), (12.13) the operator A~ : V" — V" is bounded, strictly monotone and
coercive, too, according to Remark 3.7. Further, it is easy to show that by (12.13) A is

hemicontinuous, because A(t) is hemicontinuous and in (12.13) @ is not depending on ..

Therefore, Theorem 2.14 implies that (12.15) has a unique solution = for all ¥ € V™,
Further, by Theorem 11.2 there exists a unique solution « of (11.1) in (0. ). Then by (12.15)
one obtains

Equation 2.147. (12.19)
(D [u(t) — woc]s w(t) — toch + {[Alu)] (1) — Asc (v ) ult) — uoe) =
{F(t) — Fac(tac ) ult) — s

The second term on the left-hand side of (12.19) can be estimated as follows:

Equation 2.148. (12.20)

A (#) — A (00 ). 1(8) — t1sc)

(A () = Aluc). 0(8) = 1) — | (Aftte) = Ase (). u(t) — )] =
eallult) — e |+ csllult) — ucll?

=S u(e) ~ uaell = CENAw=)]0) = Ane 0]

Further, for the right-hand side of (12.19) we have

Equation 2.149. (12.21)
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[{F(t) — Facltioe ) ult) — use)| <
P ) _ e
= e) = el +CEIF D) = Ful-

Thus, choosing sufficiently small = > 0, integrating (12.19) over [11. 72|, we obtain by
Remark 6.7, (12.13), (12.20), (12.21)

Equation 2.150. (12.22)

1 g 1 2
Slu(T2) —voclly — Sllu(t) — uacll+

ca T2 Ty X
?df [lee () — o ||J.|‘_-G’t + 3 f [ () — e || 7 dt <
T

& T

T:
con.-:tf (A=) (#) — Asc (us)|IV-e + [ F(E) — Fuc|li-.] dt <
T
T:
con.-:tf Dit)"dt.
T

Hence, by using the notation ¥ (t) = [[u(t) — u=|7;, we obtain with some * = 0

Equation 2.151. (12.23)
T

T, Ty
[y(£)]P/2dt + 2¢5 f y(t)dt < ey f [®(t)]"dt.

Ty T,

y(1s) —y(1) +¢* f

Ty

Since ®(t)? is bounded and the last term on the left-hand side of (12.23) is nonnegative, we
obtain form (12.23), as from (12.5), that ¥(t} is bounded for € (0. 2},

Further, since lim.. ® =0, (12.23) implies that

Equation 2.152. (12.24)

limy = 0.

First we show that

Equation 2.153. (12.25)

lilrLinf y = 0.

Assuming that (12.25) is not valid, there exist fo > 0 and & > 0 such that
y(t) = 8 for t > to.

Further, since lim- ® =0, for arbitrary £ = 0 there exists t1 such that
0<[®(1)]7 < ¢ for > .

Choosing sufficiently large 1. 12, by using the boundedness of ¥, we obtain from (12.23)

s — T

5

F P2 (1 — 1) < eae(Ta — T1) + s, Lo 02 < e +
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with some constant ¢z, which is impossible if = is sufficiently small and 22 — 17 is sufficiently
large. Thus we have (12.25).

Assume that (12.24) is not true. Then there exist £o > 0 and
t1 < #] < t2 < t; < ... converging to -+ oc
such that

Lliln ylte) =0, ylte) <o, y(ty) = 0.
T

Since ¥ is continuous, there is t& € (f&: tit1) with

ylt) =  sup  y(t) and y(iy) > =0
FE[E gty ]

Applying (12.23) to 11 = tx — &k, 12 = & with sufficiently small 5 > 0, we obtain from
(12.23)

f,r(f;,-) — yltp — &)+ rf*é;-ff{ < gy sup  [®(t)]7

FE[.'_;..—IE;'..F;..l
and since (1) — y(tx — 0%) = 0, we have

el <eqy  sup [T

bl — b i
which is impossible because litn.. ® =0,

So we have proved (12.24), i.e. the first part of (12.14). The second part of (12.14) follows
from (12.23) with 11 =1 —a, 12 =T+ a, If (12.16) is satisfied, too, then we obtain from
(12.22), as 12 —+ +mnx, the first part of (12.17) and in the case when 3 > 0, we find the
second part of (12.17).

Finally, we obtain from (12.23) as T2 — +n¢

—y(11) + 2e3 fx y(t)dt < fx[i(t]]qfﬁf,
T

T, |

Hence, by using the notation ¥ (1) = J5~ u(t)dt \ye get
Y'(T) + 2e3Y (1) < qu [®(£)]7dt.
T

This linear differential inequality implies (12.18) which completes the proof of Theorem 12.4.
O

It is easy to formulate conditions which imply that the operator <1(), defined by (8.1), satisfies the assumptions
of Theorem 12.4 in the case when V" is a closed linear subspace of W' (£2). So by Theorem 12.4 we find

Theorem 12.5.

Assume that the operator “{f) : 1V — V" satisfies the conditions of Theorem 8.1 such that
with some constants c2 > 0, ¢z = 0

Equation 2.154. (12.26)

n

> lajltw, ) —aj(t, . €)(& — &) = cal€ — &7+ ealé — "
=0

96
XMLmind XSL-FO Converter



FIRST ORDER EVOLUTION
EQUATIONS

Further, there exist a continuous function & and Carathéodory functions
(o @ 80 % Bl R

such that for a.a. (t: ¥) € Qe all € B*H j=0.1....n

laj(t. . &) — aj o (x. &) < ®(H)(|E[P +1) where 1'131:11‘;' =0

and there exists £ € V™ such that

|F(t) — Fo|ve < ®(t) for a.a. t > 0.

Then for a solution » of (11.1) we have (12.14) where == € V" is the unique solution of
(12.15) with operator A : V" — V* defined by

Equation 2.155. (12.27)

H

(A (z) v = -_x:.z.DzD-‘f:+/ el 2. D2)vdir.

(A (2), ) _;f;z”'f (x )Djedr Ew[] (x Jedr

Further, (12.16) implies the first part of (12.17), if cz > 0, we have the second part of (12.17)
and the estimate (12.18).

Now we formulate and prove a stabilization result on the (‘“non-local”) solution of (11.6), considered in
Theorem 11.4.

Theorem 12.6.

Assume that the (“non-local”) operator A Ly, (0. 000 V) — L (0.5¢: V) hag the form
A(u) = B(u. u) where the operator

B:IP (0.00:V)x LY (0.5 V) = LI (0.00: V*)

o

is such that for each fixed @ € Li,.(0. 52 V) [B{u.w)](t) depends only on *(t) and this

operator, mapping V" into 17*, satisfies the assumptions of Theorem 7.1 for a.a. ¢ = 0. Further,
forall w12, w € Ly, (0.5¢:V) a3 ¢~ 0

Equation 2.156. (12.28)

(B (1. w)] () — [Blus. w)](£). ur — us) >
callus(£) — ua(®)[If + esur(t) — ua(t)|F
with some constants ez = 0, c3 = 0.

Finally, there exist A= : V" — V*and F= € V'*, a continuous function & and for all 1z = 0
there is a positive constant cp such that for all veV with [[v]v =t
w € Ly, (0, 00: V)N L>(0, ¢t H) g = 0 we have

Equation 2.157. (12.29)

I[Biv,w)](#) — Asc (0)||v+ < cp®(t) and

Equation 2.158. (12.30)
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| E(t) — Fae|lve < ®(t)
where lim.. & =0,

Then for a solution of (11.6) we have the conclusions of Theorem 12.4, i.e. we have (12.14)
and if (12.16) holds then we have (12.17), (12.18).

Proof.
Similarly to the proof of Theorem 12.4, one obtains that A~ : V" — ¥*is bounded, strictly
monotone, coercive and hemicontinuous. Thus the equation (12.15) has a unique solution -

for each #== € V'™, Further, by Theorem 11.4 there exists a unique solution « of (11.6). Thus
one obtains

Equation 2.159. (12.31)
(D [u(t) — woc]s w(t) — toch + {[Alu)] (1) — Asc (v ) ult) — uoe) =
{F(t) — Facoult) — useh

The second term on the left hand side of (12.31) can be estimated as follows:

Equation 2.160. (12.32)
::[.4@.:1](#] — A (ue)oul(t) — usch = cal|ult) — H.x”’,l’,—i—
ea |l (t) — o ||%J- — |¢:[B(H.x, rr.]](t) — Ao (uoe)ou(t) —uscl| =

callu(t) = woe||§ + esflu(t) — usl|F—

oF

j_j””.(a) — s |[B = CE[|B (ses )] (£) — Ase(tioe)[|% ..

For the right hand side of (12.31) we have (12.21).

Thus, choosing sufficiently small = >0, integrating (12.31) over [11. 12| we obtain by
Remark 6.7, (12.21), (12.29), (12.30), (12.32)

Equation 2.161. (12.33)

1 - 2 1 - 2

5””-(12) — | — §||”-Ul) — uc|lf+

. T: Tz ) Tz

?‘ lu(t) — wac|}-dt + 3 f [eeit) — e || dt < con.-:tf [®(t)]7dt.
= Ty T T

Inequality (12.33) is the same as (12.22), so we can finish the proof of Theorem 12.6 as in the
proof of Theorem 12.4. o

It is easy to formulate assumptions on functions

. n+1 P
a1 Qe x| % L

loe

(0, nc: V)

which imply that the operator A of the form (11.14) satisfies the conditions of Theorem 12.6 with

T
{B(u, w)](t), v} = Zf a;(t, o, v, Duyw)Djedo+
=174
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f ap(t. o, w, Duzw)edr, wawe LY (0.00: V), ve V.
0

Theorem 12.7.

Let 1 be a closed linear subspace of W17 () 2 < p < ~c, H = L*(€2) and assume that the
operator A of the form (11.14) satisfies the conditions of Theorem 11.9 such that for all
we Ly, (0.00:V) aa. (t.1) € Qe all £.& € BH

T

Z[u_;(t, o Sru) —ajtr S u)](E — &) =
=0
|2

[ga(u)](£)]€ — &*[7 + e3]€ — &

where 3 is a nonnegative constant. Further, there exist a continuous function & and
Carathéodory functions

A QxR SR

such that for a.a. (t. ) € Qu, all £ € B!

Jaj(t. o, & u) = ajoc(@.8)] < @E(E7 +1). §=0.1n
where lim.. © = 0 and there exists ¥> € V™" such that

£t — Fclv- < ®(F) for a.a. + >0

Then for a solution « of (11.6) we have the conclusion of Theorem 12.4, i.e. (12.14) and
(12.17), (12.18), respectively, where the operator A : V" — V™ is defined by (12.27).

Now we consider Examples 10.12 and we formulate additional conditions which imply that assumptions of
theorems in Sections 11 and 12 are fulfilled.

According to Example 10.12 let

aj(t..n, CGu) = b{t, o, [H{w)](t. )& CP~2, j=1.....n.
ap (b, .1, Gu) = bo(t, ., [Ho(w)] (¢ )y P2+

bo(t, o, [Fo(w)] (£ @) (t. 2., C)

where b. bo. bo. évo are Carathéodory functions, defined for a.a. (t: T) € Qx satisfying

2

1+ |67

e

const = bit, o, &) = W

const = bit,x. &) =

with some constants ez > 0,0 < ¢* < p— 1,

lbo(t, o, 6)) < 1+ 6P ¢ with 0 < p* < p— 1 and

laolt. .. ()| < er(L+ g+ [(]8). o*+o<p*, p=0.

Further, let H. Hu. Fu be operators of Volterra type such that for all 1" = 0,

H. Hy: LP(0, T:W'P(Q)) = C(Qr).  Fo: LP(0.T: WIP(Q)) — LP(Qr)

are linear continuous operators (of Volterra type).

Then clearly, the assumptions of Theorem 11.9 on existence are fulfilled and in the case when b. bu. b are

positive constants, the conditions of Theorem 11.5 are satisfied. If &. b are between two positive constants, the
operators H. Ho may be linear continuous operators, mapping
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LP(0,T: W="P(1)) into LP(Qr). as .
For examples of operators of the above types, see in Example 10.12.

2 .
The conditions of Theorem 12.1 on the boundedness of Jo (- )% are fulfilled in the (“local”) case when
b. bo. bo are positive constants, because by Young’s inequality and 7 < P — 1

|va(t. o, v DeYe| < const (1 4 [o|#F1 4 [ De| 21 < const 27|04 | De|P] + C(2)
hence with sufficiently small = = 0 we obtain (12.1).

The conditions of Theorem 12.3 (on the boundedness of Joult.x)dx ) are fulfilled in the “non-local” case for
the above example if H. Hu are linear operators of Volterra type, mapping continuously £ (@) into C(@¢) for
all £ > 0. Further, Fuis a linear operator of Volterra type, mapping L” (@) continuously into £*(@¢) for all
t = 0. (If b. bo are between two positive constants, H. Ho may map L*(Q¢) continuously into L (@) for all
t = 0).

Because then

o

[ ]
bit, x, [H(u)|(t, x)) = - = - =
ot [HOlt2) 2 e = T+ HWN gy

a5 2

=
» 3 T . . - T
1+ comst|[u]|7z g, 1 + const (:-4111}[[]_” Joult. :r:lgﬁ‘:r)

and similarly can be estimated o(t. . [Ho(u)]| (2, =),

Further, by using the estimates in Example 10.12, we obtain by Young’s inequality
|bo(t. o [Fo(w)](t. £))én (b 2. u. Du)u| <

[1 + | [Fofu)P~ 2" (¢ :r)|] cp |u|(1 + |u]®+ | Dul?) <

comst [1+ |[Fafw)] "'~ (1, 2)[] (1 + [ul?! + | Dul?H) <

P

= [l + 1Dul ] + Cle) [1+ | Fofu)|n 1)

il
where

m p—a” p—a”
01 = = . H = <1
= m—1 p—or—p—1 m o+1
and

T [0.4]

mip—1-p")
f | Fo(u)|(t )" P12 g < const [ sup f u?(r. .'r]d.'r‘| .
02 02
Thus, choosing sufficiently small = = 0, we have (12.9) with

[ka(u)] (£, 7) = C(e) [1 | Fy )| 1= g, :r:]} ,

—1—p*
I 2 < p—o*

og=qp—-1—-p")=p—0c")————
7 (1 e") =1 )p—l—of—g

because 7" + & < ",
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Finally, we formulate conditions which jmply_that our example satisfies the assupptiops of Theorems 12.5 and

12.7, respectively (on stabilization of as ). In the “local” case, when are positive constants,
assume that  has the form

Golt. w1, €) = [1+ (£, )] ()
where [/ (t. )| = ®(t) and o is a monotone nondecreasing function, satisfying
|dn(n)| < const(l + |p|€) with 6 < p— 1.
In this case (12.26) is satisfied with ca = 0. If
o) —aoln™) =2 dnp—n"), é& =0
then we have (12.26) with some c3 = 0, In this case the conclusions of Theorem 12.5 hold, assuming also
|E(t) — Fe || € ®(t) for ace. t =0
with some £z € V7,
In the “non-local” case assume that
bit, x, 8) = ca[l +4p(t, 2, 8)],  bolt, x. 8) = &1 + ¢(t. x, §)]
where €2. €2 are positive constants and the Carathéodory functions satisfy for a.a. (f. ) € Qu, all4 € B
[ (b o, @) < ®(t),  |i(t. . )] < ®(t) where sup® < 1. lim® = 0.
Further,
bo(t.x. 4) = 1 + ot o, ) where [ia(t. . #)] < ®(¢) and
ol o, QI < [L+ (e o) Bo(n). it x)| < (1),
where /0 is a monotone nondecreasing function, satisfying
[Go(m)| < comst(1 + |n]?) with & < p— 1.
In this case (12.26) holds with ¢z = 0,
If
Bon) = Boln®) = &slp —n*). & >0
then we have (12.26) with some cs = 0. The conclusions of Theorem 12.7 hold (with const ®(t}) assuming also
[F(t) — Fu|lve < ®(t). for a.a. £ =0, with some Fo € V7.
7.3. Problems
1.
Let v € Li,,..(0. 5¢: V) be a solution of problem (11.1) with the operator A(t) in Problem 4 of Section 11 and

assume that | £'(£)][v - is bounded for a.a. t € (0. ). prove that ll*(£)ll2(22) is bounded for £ € (0. ) and
(12.2) holds.

Let u € Li,,.(0.50: V) he 4 solution of problem (11.1) with the operator A(t), t € (0.5¢)in Problem 3 of
Section 8 (see also Problem 5 in Section 11) satisfying the conditions
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cy Zalt,r)< e, oy <30 r) € e foraa (for) € Qu

with some positive constants e1. €2, Assume that £ € L™ (0, 5¢: V), prove that l4(t)ll 2 (<) is bounded for
t € (0.5¢) and (12.2) holds.

Let u € Li,,.(0.5: V) e a solution of problem (11.1) with the operator A(f), £ € (0.5¢) in Problem 6 of
Section 8 (see also Problem 6 in Section 11). Assuming £ € L™ (0. 5¢: V), prove that I (£)ll L2 (2 is bounded
for t € (0.5¢) and (12.2) holds.

Assume that the operator (¢}, defined in Problem 4 of Section 10 satisfies the conditions in that Problem for
all t€(0.2¢) prove that if u is a solution of problem (11.1) with the above operator “(t) and
Fe L0, 00: V) then [#(£)]| 22 <2 is bounded for ¢ € (0. 5¢) and (12.2) holds.

Assume that € L,.(0. 5¢: V) js a solution of problem (11.1) with the operator A(£), t € (0. ) considered
in Problem 3 of Section 8 (for 0 < ¢ < 1) and in Problem 2 for t € (0. o), Further, assume that there exist
functions =< F= € L™ (£2) such that

Jm flaft, ) = aocllLegg =0, lim |3t ) = B [l L) = 0.

Further, there exists £ € V™ such that

lim [[E(t) = Faclly- =0,

Prove that then

T+a
limm |[u(t) — o] 2y =0, _lim f () — woc|}-dt =0
{—r o o T—oc fp_,

for arbitrary fixed a = 0 where 1~ is the unique solution to
f [evoe () (D t10c) | Dt P2 D jiwr + Boc () thoc | thoe [P 2w] d =
02

! ¥ k r
Fac,wy, weWl

Formulate and prove a theorem on the stabilization of the solution of (11.1) (as t — ~c) with the operator A
defined by

A [u(B)]. v (1)) = Z f (D) | D%u|P~ 2D vda.  t € (0. 50).
|ex| <o ™ *
u. v € Ly, (0,501 V) v is a closed linear subspace of W (22), if there exists F € V* such that

lm [|E(8) = Fac]| 1= (0 = 0.

8. 13 Periodic solutions

In this section we shall formulate conditions which imply the existence of I"-periodic solutions of evolution
equations in (0- ), In the proofs we shall apply the following maximal monotone operator. (See (9.11), Remark
9.5)
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Definition 13.1.

Let V" < H < V* be an evolution triple and define operator L by

Equation 2.162. (13.1)

Lu=u'. D(L)={ue IPO.T:V):u' € LY 0, T: V*), u(0) = u(T)}

Theorem 13.2.

The operator (13.1) is a closed, linear, densely defined, maximal monotone mapping from
LP(0.1: V) into L7(0. 12 V™), The maximal monotonicity of I means that it is monotone and
it has no proper monotone extension.

Proof.

It is not difficult to show that L is a closed, linear, densely defined operator, mapping from
LP(0.7: V) into L7(0. 1 V™), Further, the operator L is monotone because by Remark 6.7 for
arbitrary u € D(L)

T
1
[L, =L {u' (1), u(t))dt = 3 (a3 = a3 ] = 0.

Further, assume that for some v € LP(0, 12 V) w € L0, 17 V™)

Equation 2.163. (13.2)
[ir — Lu,v— u] = 0 for all w € D(L).

We have to show that © € D(L) and w = Lv = «'. Apply (13.2) to u(f) = At'(t)z where
zeV, ¥ € Ci(0.1) and A €  are arbitrary. Since

T T
[Lu, u] = f (' (£), u(t))dt = f W (#){z, 2)dt = 0,
0 0
we obtain from (13.2)

[w, v —u]— [Lu,v] = 0, ie
T T T
f {w(t), v(E)dt — A f {wit), v (t)z)dt — f (' ()=, v ()dt| = 0.
1] 0 1]

This inequality may hold for arbitrary A € I, only if

T T
f {w(t), v (#)z)dt + f (' (B)z, v(t))dt =0
0 0
which implies according to Remark 6.5 that
v = w e L0, 71V,

Further, by using the formula in Remark 6.7, we obtain from (13.2) and ©(0} = u(1’)

Equation 2.164. (13.3)

0 <200’ — v —u] = [lo(1) = u(D)|F — 0(0) — u(0)F =
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(w(1), 0 (1)) + (u(L), u(1)) = 2(u(D). (1)) — (v(0), (0)) — (w(0), u(0))+

2(u(0). v(0)) = [le (D)7 — (O + 2(u(0). v(0) —o(17).

The inequality (13.3) implies v(0) = v(1") je. v € D(L). Indeed, assuming v(0) # v (1), one
could find * € D(L) such that the right hand side of (13.3) would be negative, since for
arbitrary © € V", the function

ult)=v, tel0.7]

belongs to 22(L). So we have shown that L is maximal monotone. o

Now consider evolution equations in (0. 5} with “local” operators A which have the form

Equation 2.165. (13.4)
[A)] () = [A(#)][u(t)].
Theorem 13.3.

Assume that for a.a. ¢ > 0, the function £ — A(t) is I-periodic (i.e. At +1) = Alt) for aa.
¢ = 0), and satisfies the conditions of Theorem 9.2, further, £ € Li,.(0. 5¢: V*} s 7-periodic,
too.

Then there exists a 7™-periodic function % € Li,.(0. 5 V) which satisfies ' € L, (0. 0c: V)
and

Equation 2.166. (13.5)

w' (£) + [A@®)][u(t)] = F(t) for a.a. t > 0.

Proof.

The assumptions of Theorem 13.3 imply that the operator
A LP(0.1: V) — L9015 V™),

, defined by

[Aw)] () = [A@)][ut)],  te[0.1]

is bounded, coercive and pseudomonotone with respect to " ';{ (0. 12V, H ), and, consequently,
it is pseudomonotone with respect to 2(L) (defined by (13.1)). Further, we claim that it is
demicontinuous. Indeed, for a.a. fixed ¢, A(t) : V' — V™" is demicontinuous, thus, if (u&) — u
with respect to the norm of L7(0. 2 V) then for a.a. t € [0. 77 (uk(t)) — u(t) with respect to
the norm of V" (for a subsequence) which implies that for each fixed v € L7(0.1: V) aa,

te (0,1
::[il:f:]][u;,(f:]] v(t)) — {[i(f)][u(f)] v(t)) as b — o

(since A(t) js demicontinuous), so Vitali’s theorem, Holder’s inequality and the boundedness
assumption (9.5) imply

[Alug), v] = [Alu), v] as k — .

Thus by Theorems 9.4, 13.2 there exists a solution # € D(L} of (13.5) in [0:1]. Since
u € D(L) we have (0) = u(1"), Thus, defining =(t) for ¢ = 0 by
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ult + k1) =ul(t), te(0.17], k=12 .
we obtain

we LY (0.00: V). w'e L] (0.50: V™) and u is 1-periodic.

o

(' € Lip, (0. 50 V¥ ) follows from ©(0) = u(1") and formula (6.9).) Thus u satisfies (13.5) in
(0. 5).

Applying Theorem 13.3 in the case when V" is a closed linear subspace of W' () p > 2 H = L*(Q), to
operators of the form (8.1), we obtain directly

Theorem 13.4.

Assume that the functions @; : @ x B"** — R are 1-periodic, i.e. for a.a. t > 0.z € Q and
all§ R

aj(t +1.r.8) =ajt.x.£)

and their restrictions to 0. 77 satisfy (B1), (B2), (33) or (B%) and (34). Further,
Fe L, (0,00 V) s 7operiodic, too.

Then there exists a 1’-periodic solution " € Ly, (0.2 V) of (13.5) where the operator
Alt) : V= V" s defined by (8.1).
In the case of “non-local” operators A, instead of the abstract Cauchy problem we consider the following

modified problem, which is a generalization of the Cauchy problem for functional differential equations in one
variable (see Remark 10.11):

Equation 2.167. (13.6)
w'(t) + A(t,u) = £(t) for a.a. t € [0,0¢], u(t) = (t), for a.a. t € [—a,0]

where ¢ is defined by

Equation 2.168. (13.7)
wi(s) =ult+s), se&[—a0, t=0

€ LP(—a, 0; V) F € Ly, (0. 50: V*) are given functions and we want to find a function * € Ly, .(—a. > V)
q

such that #* € Ly, (0. 52 V") and  satisfies (13.6). Further,

Equation 2.169. (13.8)

A (0,00) % EP(—a,0; V) — L (0, 00: 1V*)

is a given (nonlinear) operator. Observe that defining operator
ALY (—a.0c: V) — L (0. 00: V*) by

[A(w)](t) = A(t.w), we LD (—a.oc; V), £>0

the differential equation in (13.6), i.e.

w/(t) + [A()](t) = F(t). >0, u'€ L, (0,50: V")
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has the form (11:6),whigh was considered in Section 11. We assume that 4 is of Volterra type and [Alu)](t)
depends only on

We shall formulate conditions on A and £ which imply that for some ' € L”(—a.0: V) there exists a 1'-
periodic solution of problem (13.6).

Theorem 13.5.
Assume that the operator
A (0,00) % EP(—a,0; V) — L (0, 00: 1V*)

o~

and F are T-periodic, i.e. for all v € L”(—a.0:17)

At +T.0)=Alt.v). F(t+T1)=F(t) for a.a. t € (0, ).

and A is of Volterra type. Further, assume that the operator A : L7(0, 15 V) — L9(0, T3 V™),
defined by

Equation 2.170. (13.9)

[A(w)]|(t) = A(t. (Pu)), te[0.T], we LP0.1:V)

Equation 2.171. (13.10)
(Pu)(t) =u(t+ FL)if t > —a and t+ KT € (0,1 for some k =0,1,2, ...,

is bounded, demicontinuous, coercive and pseudomonotone with respect to

Equation 2.172. (13.11)
DLy = {u € LP(0. V) u' € LU0, 13 V*), u(l) = u(0)}.

Then there exists % € Li,,.(—a.50: V) gych that ' € Lj,,.(—a. 0c: V")

u'(t) + At ) = F(t), u(t+1)=ult) for a.a. t € (0, 00).

Remark 13.6.

Theorem 13.5 means that for all 1" = 0 there exists

i € LP(—a, 0: V) with o' € L9 (—a. 0; V)

such that there exists a 7"-periodic solution of the Cauchy problem (13.6).

Proof of Theorem 13.5.

Since by Theorem 13.2 L = IJ; is a maximal_monotone, closed, densely defined linear
operator with (L) given in (13.11) and 4 : LP(0. 12 V) — L9(0. 72 V™) js bounded,
demicontinuous, coercive and pseudomonotone with respect to (L), by Theorem 9.4 there is
a solution # € D(L) of

w' + Afu) = F.

Then for Pu, defined by
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(Pu)(t) = u(t +kT). t>—aand t+ kT € [0.1] for some integer k

we have Pu € L, .(=a. 51 V) by is P-periodic, (Pu) € Li,.(—a. 501 V") and satisfies
(Pu)'(£) + A(t. (Pu))) = F(t), for a.a. t€ (0, ).

i.e. the statement of Theorem 13.5 holds for Pu. o

Now we apply Theorem 13.5 in the particular case when A has the form analogous to the formula (10.37) and 17
is a closed linear subspace of W'7(€), H = L*(£), Similarly to the conditions (C'1) — (C'5) and the conditions
of Theorem 11.9, assume

(C1*) The functions

aj: Qo % B o [P (—a. 0:V) - R

satisfy the Carathéodory conditions for arbitrary fixed @ € L¥(—a.0: V) (j = 0. 1. ....n), and are 7™-periodic:
aij(t + 1, o &iw) =a;lt,r & w)

forae. (f- 1) € Q. all & € R w € LP(—a.0; V),

(C2*) There exist bounded (nonlinear) operators g1 : L7 (—a.0: V) — B* gng k1 : LP(—a, 0; V) — LY(Qr)
such that

laj(t. z, 0, Guw)| < gu(w)[1 + |g[P~ + |¢[P7H + [ka(w)] (£, x)
forae. (f-1) € Q7 each (1. () € B gpd w € L7 (—a. 0: 1),

(C3™) There holds the inequality
Z[ﬁ_j(t. o, Gw) —aj(t, o g, ))& — §)= [g2(w)]|C = ¢ |7
i=1

where
g2(w) = & [L+ |wee(aoy] -
* is some positive constantand 0 < " < p— 1,

(C4*) There holds the inequality

n

N aj(t.zn, Gl = [g20)][1+ |nl? + 1C7) — [ka(w)] (¢, 2)

where k2(w) € L' (Q7) satisfies for some positive & < p — o*

o

k2 ()] 11 (@) < const [1+ |[w|| Le(—a.0:1)]

(C5*) There exists 8 > 0 such that if (wx) — win L”(—a, 0: V), strongly in L (—a. 0: W'=%(Q)) (n*) — 5in
E, (C*) = CinE" then foraa. (f.0) € Q7 j =0.1....n,

lim aj(t, on" (Frwg) = a;(t, o, G w),
k—oo ’
for a subsequence.

Definition 13.7.

Assuming (C'1*) — (C5*), we define operator
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ALY (—a.00: V) — L (0,00 V) by

o

Equation 2.173. (13.12)

{[A(w)](#), v} = f {Z ajlt, o, u, Duiu)De + aplt, @, u, Du; H.,l)f‘} dur,
4

a |
ue LY (—a.oc: V), veW

Theorem 13.8.

Let 1 be a closed linear subspace of W' (), H = L*(Q) assume (C'1%) — (C5*) and let

1 e Ly, (0.0¢: V) pe 7 periodic. Then there exists % € Li,.(—a.2¢:V) sych that
u' € L} (—a.>: V") and

w'(t) + [A(u)](t) = F(t). ult+1)=ult) for a.a. t € (0, 2).
Proof.
Let At, ue) = [A(w)](£) where [A(1)] () is given by (13.12), then the operator
A LP0.1:V) = L0, T: V™),
given in (13.9), has the form
{[A)(t), vy = (A(t, (Pu)e),v) =
L {Z a;(t, ., u, Du; (Pu))Djv + ap(t, x, u, Du; (Pu);)t‘} dr,
L=t
we LP0,1:V), veV
where Pu is defined by (13.10). By Theorem 10.9 the assumptions (C'1%), (C'2*), (C4*) imply
that A is bounded, demicontinuous and coercive. Further, (C'1*) — (C5*) imply that A is
pseudomonotone with respect to 2(L), given by (13.11). This statement can be proved by

using the arguments of the proof of Theorem 10.9. Thus Theorem 13.8 directly follows from
Theorem 13.5. o

Now we formulate conditions which imply that the Examples 10.12 satisfy the conditions of Theorem 13.8.

Example 13.9.

Assume that the functions b. bo. bo. évo are 1'-periodic. Further, operators H. Ho. £ have the
form

Hiu) = I—}l:nt,], Hy(u) = ﬁ[](rr.,u], Fylu) = F[](H.,:]
where
H. Hy: LP(—a, 0: W5 (Q)) = C(Q7).  Fo: LP(—a.0: WI(Q)) — LP(Q7)

are linear continuous operators. Then the conditions of Theorem 13.8 on . are fulfilled.

8.1. Problems
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Show that for the Example 13.9 the assumptions of Theorem 13.8 are fulfilled.

Consider the functions

it Qe xB—-E 7=01....n

which satisfy the assumptions of Problem 1 in Section 8 for all € (0. ) (see also Problem 4 in Section 11)
and

ait+ 1 r &) =ait,r. &) foraa t 20, ), & eBR
Further, £ € Lj,,.(0. 5¢: V") satisfies
F{t+71) = F(t) for a.a. > 0.

Prove that there exists a 7-periodic solution t € L(0. 5 V) of the equation (13.5) with the operator A()
defined by functions i in Problem 1 of Section 8.

Formulate and prove a theorem on the existence of a 7’-periodic solution of the equation (13.5) where the
operator A(t) is defined in Problem 3 of Section 8.

Formulate and prove a theorem on the existence of a 7'-periodic solution of the equation (13.5) where the
operator Alt) is defined in Problem 6 of Section 8.

Formulate and prove a theorem on the existence of a 1'-periodic solution of the equation (13.5) where the

operator “(t) is defined in Problem 4 of Section 10.
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In this chapter we shall consider certain nonlinear hyperbolic differential equations and functional equations
which can be treated by means of monotone type operators. Namely, we shall consider equations of the form

w4 N(u')+ Qu+ M(u',u)= F

where IV is a nonlinear operator of monotone type, & is a linear operator having some particular properties and
M is a nonlinear operator with some compactness properties, finally, £ € L?(0. 13 V),

1. 14 Existence of solutions in ©.1)

As before, let V. € H < V* be an evolution triple, 1 < p <0 o¢ and let the operator L be defined by
Lu=u'. D(L)={ue LP(0.T:V):u" € LY0.T: V"),  u(0) =0}.

Assume that

(DY) N LP(0.17V) — L90.1:V") js bounded, demicontinuous, pseudomonotone with respect to (L) and
coercive such that

-
[N (v). f~]=f (N @), v (Bt = callv ]y g — €30 v € LP(0,T5V)
0 : !

with some constants c2 = 0. 3,

(D2) @ 1 V — V*js a linear continuous operator with the properties:
(Qii. Ty = {QF. ). (Qi. i) =0 for any ii. 7€V

and define @ : L7(0. 13 V) — L7(0. T2 V* ) py

(Qu)(t) = Qult), we LP(0,T;V).

(D23) The operator

M L2017 V) = LP(0,17V) — LU0, 1T, V™)

is bounded, demicontinuous, it has the following compactness property: if (i) — t weakly in L7 (0. 1317,
I I . ] 7, s " " . ] . T
(i) = u" weakly in L7(0. 7% V) and (ui) — " weakly in £7(0. 7% V™) then for a subsequence

(M {uf ., ug)) — M(u',u) weakly in L7(0, 77 V*) and

—OC

T
lim f (M (uf, ug)(#), up(8) —u'()ydt = 0.
1]

Finally,
lirn [l e, ”')||JIJ.¢{[J.T'|-"} =0
[ fresur || —+oe ||rr.||;’I’J,I:U__r__ll__:I + ||F||JIJJ'.;:[]_T-_|,.-:,
where | (- 0)[l = [l oo movy + vl e vy,

Theorem 14.1.
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Assume [0(1PH )N ([ #p3v).  Then for ramitcary’) b €cLiQol 7Vi) there  exists

such that , and

Equation 3.1. (14.1)

u’ + N(uw")+ Qu+ Mu' )= F in [0, 1],

Equation 3.2. (14.2)

u(0) =0, wu'(0) =0.

Proof.

Define operator S : L7(0. 1: V) — C([0. T]: V) py

(Sv)(t) =f v(s)ds.

0

Clearly, S is a linear and continuous operator. If « is a solution of (14.1), (14.2) then v = u'
satisfies © € LP(0.1: V) v' € L0, 1:V*) and

Equation 3.3. (14.3)

v+ N(v) + QSv + M{v, Sv) = F

Equation 3.4. (14.4)
v(0) = 0.

Further, if v € L”(0. 1% V) satisfies (14.3), (14.4) then u = Sw is a solution of (14.1), (14.2),
since u = Sv is absolutely continuous and #'(t) = v(t) for a.a.t €[0.7]. Thus, due to
Theorem 9.4, it is sufficient to show that the operator A : L”(0. 7% V) — LU(0. 12V
defined by

Alv) = Niv) + QSv + M(v, Sv)

is bounded, demicontinuous, pseudomonotone with respect to (L) and it is coercive.

Since the operator & : L7(0. 13 V) — L*(0.7: V) js linear and continuous, from assumptions
(i) - (i) directly follows that A:ZLP(0.1:V)— L90.17:V*) js bounded and

demicontinuous.

Now we show that A is pseudomonotone with respect to 2(L). Let (%) be a sequence in P(L)
such that

Equation 3.5. (14.5)

) — v weakly in LP{0.1: V), (v]) — ¢ weakly in LY(0. T V™),
E
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Equation 3.6. (14.6)
litn sup[A(vg), v — v] < 0.

F— o

By (ii) the linear operator @5 : L”(0.7:1V) — L?{0. 7% V™) js monotone. Indeed, by using
the notation « = S, we have + = u’ and thus

Equation 3.7. (14.7)
[QSv, v| = [Qu.,u],

SO

Equation 3.8. (14.8)

T
[Qu,u] =L (Qu(t). w'(t))dt = %ﬂ:l‘jfﬂu'). u(1)) — %{éfr.('[}). u(0)} =

é{fju.u'), u(1)y = 0.

To obtain formula (14.8) we choose a sequence of polynomials @ * [0- 1] — V" such that
g — ' i WHO, T VO H), @ — win C[0,T]; V) as 1 — o,

Then

(Qai (). ai(t))' = (Qq/(t). (1)) + (Qault). qf (1)) =

2(Qa(t). qf (1))

and after integrating over [0- 7' we obtain
T FP= 7 y 1 P g N 1 i [
f Ra(t), q(1))dt = S{Qu(T). @(1)) — - {Qa (0), @ (0)
] = =

and so (14.8) follows as I — o,

Consequently,

[Q.S't‘;,- — QSv, v — E‘] = 0,

hence

[QSvg. v — v] = [QSv. v — v] = 0 as k — o,

which implies

Equation 3.9. (14.9)
li;ﬂillf[QSt‘;-. ) — t‘] =0,

o I
Set ug = Svg, u = Svthen Uk = U ¢ =y’ and

Equation 3.10. (14.10)
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(Svr) — Sv weakly in L7(0,1% V), ie up — u weakly in LP(0, 17 1V)

and by (14.5)

Equation 3.11. (14.11)
(u) — v weakly in LP(0, 75 V), (uf) = u" weakly in L7(0,1; V*).

Thus by assumption (133) for a subsequence (denoted in the same way) we obtain

Equation 3.12. (14.12)

Mivg, Svi) — M (v, Sv) weakly in L1(0, 1 V™),

Equation 3.13. (14.13)
klim [M (g, Svg), v, — v] = 0.

Now (14.6), (14.9), (14.13) imply

Equation 3.14. (14.14)
lin sup| N v ), v, — v] < 0,

=

for a subsequence. By using Cantor’s trick one obtains that (14.14) holds for the original
sequence, too.

Since according to (121) IV is pseudomonotone with respect to (L), by (14.5), (14.14) we
have

Equation 3.15. (14.15)

(Ni{vg)) = N{v) weakly in L7(0, 15 V™),

Equation 3.16. (14.16)
.L-IEH [NV (vg), v — v] = 0.
From (14.6), (14.13), (14.16) one gets

limn sup|QS(vg ), v — v] < 0

=

for a subsequence and so by (14.9)

Equation 3.17. (14.17)
klim [QS(vg), v —v] = 0,

whence
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Equation 3.18. (14.18)
.r,-lim [Alvg), v —v] =0
for a subsequence, thus by using Cantor’s trick we find (14.18) for the original sequence, too.

Since @5 : LP(0.7:V) — L*(0. T3 V") s linear, continuous and monotone, by Proposition
2.5 it is pseudomonotone which implies by (14.17)

Equation 3.19. (14.19)

(QS(v)) — QS(v) weakly in L7(0, T V7).
Therefore, (14.12), (14.15), (14.19) imply
(A(14)) = A(v) weakly in LU(0, 13 V*)

(for 251 subsequence), so by (14.18) we have shown that A is pseudomonotone with respect to
D(L),

Finally, we prove that A is coercive. By assumption (i) and the monotonicity of &S

Equation 3.20. (14.20)
[A(e), v 3 M (e, Se). o]

o

||“||J:‘.ﬂ'u:ju.1"-.n-'j. ||f‘||J:‘.a--:j[J.T-.h-';. ||“||J;J.r-:jt1.1";h-'j-

and for the last term we have

Equation 3.21. (14.21)

[ 1/
[[M (v, Sv),v]| < [| M (v S“)||§,ra.;j[]_1"-_l.-'-:. I

| “||J:J.a--:jt1.1";h-'j- | “||J:J.!-u:ju.7‘-.'|-'}

Equation 3.22. (14.22)

| (v, 5")||r:r,fa.;;[1_7‘-_'|-'-;.

” f‘”JJ",.I-[:[]_'.T‘-_'|-':.

[| M (. 5“)||?.ra-:j[].1"-.a-‘-} ||"||J:‘.a--:j[1.1"-_a-'j. + ||5“||J:J.!--:j[J.T-.a-'j-

||"||J:‘,a-.:jn_r-_a-';. + ||5“||J:J.!-.:jn_r-_s-';. ||"||J:‘,a-.:jn_r-_a-';.

According to assumption (123), for arbitrary = = 0 there exists a == 0 such that
([ M (v, 5")||r:r_ra.j[]_7‘-_l|-'-j.

||F||JIJJ'-Z:[]_T-_'|-'} + ||5“||J:J.!-.:jn_r-_a-';.

-~

||f‘||J:‘,a-.;:n_T-_'|-';. + ||5f‘||J:‘,a-.;:[]_T-_\-']. > a implies

Thus by the boundedness of S and (14.22)

1M (0, SO0 povs \
CEUA N o - R — sup || M (v, fr.:]||'§‘,“::[]_7-__.l.-.:, =

Lo zvy Ivlp+lule<a

[ f‘||J:‘,J-.;:[J_T-_\-']-

114
XMLmind XSL-FO Converter



SECOND ORDER EVOLUTION
EQUATIONS

C*(a
Ce + ] (a)
||f‘||;,4'.;:[]_7':'|-'}

with some constant €' == 0 and a constant C™ = (1, depending on a. Choosing sufficiently small
£ > 0, we obtain

1M (v, S| 7a 0,704

[ f‘||J:‘.a-.;ju.T-.'|-'}

< (e2,/2)7

if |l e (0.7:v) is sufficiently large, whence by (14.20), (14.21) we find
[A(e), v

[ f‘||J:‘.a-.;j[J.T-.a-'j-

P
= /2 — 3

| “||J;J.a-.;ju.7‘-.'|-'j-

if lvllLeo.rav s sufficiently large. Thus, A is coercive which completes the proof of Theorem
141. o

Now assume that instead of (121) the following (stronger) condition is fulfilled.

(D1) N« LP(0. 13 V) — L9(0.1: V™) js bounded, demicontinuous, coercive (as in (121)) and is of (S)+ with
respect to (L) (see, e.g. [8], [93]): if for v« € D(L)

(vp) — v weakly in LP(0, 12 V), (vp) — o weakly in L7(0, 17 V™),

litn sup[N (v ), v — v] <0 then (vg) — v in LP{0, 15 V),

k—soc
(Then, clearly, " is pseudomonotone with respect to 2(L).)

In this case we may assume a weaker condition on A:

(D3') The operator M : LP{0. 13 V) < LP(0. 13 V') — L7(0. 13 V™) js bounded, demicontinuous. Further,
i (ug) = w. (ul) — u weakly in LP(0, T V).

(u) — u" weakly in L9015 V")

then for a subsequence

-
lim f ([ (g g )] (£), up (8) — w'(£)ydt = 0.
1]

F— o

Finally,

Equation 3.23. (14.23)

|| M (v, ”')||r§.ra-:jt1.1";h-'-j _0

limn - -
[|{rearf || e ||”-||J;,;-.;:[]_'r-_'.-'j. + ||“||J;,;-.;:[]_'r-_'.-'j.

Theorem 14.2.

Assume (D1’), (D2), (3. Then for arbitrary £ € L(0. 1 V") there exists t € C([0.7]: V)
such that u" € LP(0. 12 V) w” € L9(0. 1 V") and (14.1), (14.2) hold.

The proof of this Theorem follows from the proof of Theorem 14.1.

Remark 14.3.
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One can prove the following generalizafion ofyaTheorgny 1450 topproblems with

nonhomogene@gs initial conditions. Assume ( )-( )or( ), ( ), (¥ €) Ktgh thaithe

eQecivity of, hglds in the sense gf Theorem 9.6u Ehen[fiod hrbitrary«’ € L7 (0,13 V) ,

u e L0, 1 V™), there exists such that , ,
, satisfies (14.1) and

Equation 3.24. (14.24)
() = uog, H."['[]') = .

Indeed, if « is a solution of (14.1), (14.24) then ¥ = u' € LP(0. 12 V) ¢" € L9(0.1:V*) and ¢
satisfies

Equation 3.25. (14.25)

B+ N(§) + QSF + M(#. 5& + uo) = F — Quo.

Equation 3.26. (14.26)
#(0) = uj.

Conversely, if © € L”(0.1: V) satisfies (14.25), (14.26) then u = S© + u satisfies (14.1),
(14.24)u € C([0.1]: V)

It is not difficult to show that if A satisfies (123) or (3') then the operator
(., @) — M(%, @+ up)

also satisfies (iii) or (iii’). Consequently, by Theorems 9.5, 14.1, 14.2 there is a solution of
(14.25), (14.26) and so there is a solution of (14.1), (14.24).

Remark 14.4.

Assume that (D1) is satisfied such that IV is uniformly monotone in the sense

Equation 3.27. (14.27)
::[.'“\.-'(v:]](?f) - [-'"‘.-'l:tt":]](?f). t‘(?f) - tt-‘(ﬁ):" = E‘.g”c*(t:] — ““)”J\ and
‘:"j(ﬁ) ﬁ.:: = ESHFF”?

with some positive constants 2. c3, further, A = 0. Then the solution of (14.1), (14.24) is
unique and it depends continuously on £~ o, w1,

Indeed, then for solutions i of (14.25), (14.26) with f = £ uo = uf, uy = u (1=1.2) we
have

Equation 3.28. (14.28)

i
f {T] (7) — vh(T), t1 () — va(T)pdT+
0
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A (N (ED] () — [N(E2)] (7). T4 (7) — Fa(r)idT+

i
f {QS(t1(7) — F2(T)). T1(T) — Ta(r)pdT =
0
'

i
f {Fy(T) — Falr), to (1) — va(r))dT — f[] (Q(uf — ud). T1(r) — To(r))dr.

0
Since by Remark 6.7

L - - L 1 - 1 -
f (T (r) = T4 (7). B1 (1) = Ta(r))dr = S| (t) = T2 ()T — 51172 (0) — E2(0)[I3 .
0 = =

we obtain from (14.27), (14.28) by Young’s inequality for the solutions iij = Stj + uj
L, ~ 1 2 C2) =1 _ =P AT - 2
Sl () = as(blly + 0 = dallyug o + 5 w0 () — aa(BlF <
. ) 1 a2 1 292
cal[ £1 — 1*2||r:r,ra.;j[1_a-_s-'-;. + eslluy — il + s llug — uglly

with some positive constants €4. €. c6,

Applying Theorems 10.1, 10.9, one easily gets from Theorem 14.1 and Remark 14.3
Theorem 14.5.
Let V" be a closed linear subspace of W'7(2) (p =2, 0 c B* a bounded domain with
2 AT 3 AR Te [} AR el
sufficiently smooth boundary), H = L~ (£2), Assume that V' : L7(0. 72V} — L7(0. 1% V™) has

the form (10.37) and (C'1) — (C'5) are fulfilled such that 92 (%) and #2() are not depending on
u. Further, operator € has the form

Equation 3.29. (14.29)

Q1. zt}:f > ajilx)(Dyit)(Dyi) + dlx)id | de+
Q.
J.0=1

f Kir, z)u(x)v(z)dedz, .7 €V,
T EEY]

where @i. d € L>(82) aj = ayj, Z_J;_.l=1 aji(T)€;& = ”‘, d(x) =z Oforaa = e @, all &£ € B

Kel?(0xQ), K(rz)=K(zx) and

Equation 3.30. (14.30)
f Kir, z)u(r)i(z)drdz = 0.
0%

Finally, there is & = 0 with & < 1/p such that

Equation 3.31. (14.31)

M :LP(0,T: V) x LP(0.1: V) — LO(0. 7 W 7))
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is bounded, demicontinuous,

Equation 3.32. (14.32)

M (v, )l oo o —oppyy-y S const [||“||T,r.;;n_7‘-_'|-';. + ||”-||':T,a-.;;n_7‘-_'|-'}}
with some constant 0 < & < p— 1,

Then there exists a solution of (14.1), (14.24).

Proof.

By Theorem 10.9, and Remark 10.10/V satisfies (1217). Clearly, Q satisfies (D2). Finally, we
show that A4 satisfies (D3). By (14.31)

M L2017 V) = LP(0,17V) — LU0, 1T, V™)
is bounded and demicontinuous. Further, if

(ug) — w,  (uh) — v’ weakly in LP(0,T: V),
(uf) — u" weakly in L9(0, T; V*)

then by Theorem 10.1 for a subsequence

(u}) — u'in LP(0, 1 Wi=2(Q)),

thus by Holder’s inequality

[M (o ug).uf — u'] — 0

since M (. uk) s bounded in L?(0, 15 W'="P(2)*) py (14.31). The assumption (14.32)
implies (14.23). Therefore, from Theorem 14.2 we obtain Theorem 14.5. o

Remark 14.6.

The assumption (14.30) means that the selfadjoint and compact operator & : L2 (€2) — L*(€2),
defined by

(K)(z) =f K(r, 2)i(z)dz. e L*(Q)
02

is positive which is equivalent to the fact that all eigenvalues of K are nonnegative which
holds if and only if the function K has the form

Equation 3.33. (14.33)
Kir,z)= Z i ()u; () with some o € L2(Q).

b

Indeed, by the Hilbert-Schmidt theorem
K& =) A(F 05)e;
3

where Ai are the eigenvalues and -7 =1.2.... is the orthonormal system of the
corresponding eigenfunctions of K (this system is finite or countably infinite). Thus
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f K (. 2)ii ()i (z)dwdz = (K, ) = Y _ Aj| (i, )|
12 F
Further, since

f Kr, z)u(x)v (z)dadz = f (K #) ()it (x)dr =
020 3!

[2 () [Z AT, lr:‘_j:]l.r:‘_jl:.'r)] dr = fz 2 [Z )._;Lr:'_;(:r)lr:_j(z]] t(x) v (z)drdz,
‘ i R

and i = 0 we have

Kir,z)= Z Ajwilr)ei(z),
i

i.e. we have (14.33) with Vi = S
1.1. Problems

1.

Prove Theorem 14.2.

Consider the initial-boundary value problem

Equation 3.34. (14.34)

T
D — Z Djla;(t. =, Dyu, DDy + ao(t, o, Dy, DDyu)—

Z Djlaj(@) D] + d(z)u = flt, =), (t,x) € Qr,

=1

Equation 3.35. (14.35)

w(0,x) = uglx), Dyu(l, ) =wui(z), zinld,

Equation 3.36. (14.36)
t|r, = 0 where I'r = [0, 17) % 052

Prove that u is a (“sufficiently smooth™) classical solution of (14.34)17 (14.36) if and only if the function L7,
defined by U () = & — u(t. x) satisfies (14.1), (14.24) where?” = Wy () H = L*(€2) a7 — 0,

Equation 3.37. (14.37)

T
[N(v), w] = f [Z a;j(t, . v, Dv)Djw + aglt, o, v, Dow| didr,
0,

v T i=1

119
XMLmind XSL-FO Converter



SECOND ORDER EVOLUTION
EQUATIONS

Equation 3.38. (14.38)

T

[Qu, w] = f Z ai (o) (Dyu)Djw + dx)uw | didr,
oy

ai=1

w,v,w e LP(0, 77 17),

Equation 3.39. (14.39)
[Fw] = f fwdtdr, we LF(0.17:V).
oy

If this function L7 satisfies (14.1), (14.24) with the operators (14.37), (14.38) and with £’ defined in (14.39), it
is called a weak solution of (14.34) — (14.36).

Assume that M = 0,
[N(v), w] = f Z filt, o, Do) Dyw + folt, o, Dyew | did
Qr | =1

where the functions f; satisfy the Carathéodory conditions,

&+ filt. . &) is monotone nondecreasing
. A.p
foraa. (t. ) € Qp, V = WP (Q) H= L*(Q)

A& P < filtm.&5)| € BaléP! for aa. (87) € Qr

with some positive constants Z1. 2 and » = 2. Further, @ has the form (14.38) where

Equation 3.40. (14.40)
aji.de LX), ajy=ay. Z aj(r)g;& =0, dix) =0
1=

foraa = 9, all & € R"

Prove that then for each £ € L7 (0. 1% V™) wg € V' w1 € H there exists a solution of (14.1), (14.24) (i.e. a
weak solution of (14.34) — (14.36) with @ (t. #. &) = filt.x. &), j=0.1,.. ., n),

Let A = 0 and

n

[N(v), w] = f Z(D_J;t‘ﬂDt‘P‘_gD_;u-' + | [P 2w | did,
(

v =1

where v w € LP(0.1: V) V = WiP(Q) p > 2 H = L2(2), Further, assume that @ has the form (14.38)
such that conditions (14.40) hold.
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Prove that then for each " € L*(0.1: V™) wy € V, uy € H there exists a solution of (14.1), (14.24), i.e. a
weak solution of (14.34) — (14.36) with

ajlt. . ) =GlCP 2 for j=1..... m,

ap(t.r.n.O)=qnP= neR. (eR"

2. 15 Solutions in ©.x)

Now we consider equation (14.1) for ¢ € (0. o), By using the notations of Section 11 we have

Theorem 15.1.

Assume that @ : V — V* satisfies (ii). Let

N L2 (0.00: V) — LY (0,50 V"),

M LP (0, 00: V) % LE, (0, 00: V) = LE (0, 5c: V)

be operators of Volterra type and assume that for each finite 1" = 0 their restrictions to (0. 1)
satisfy (121) and (123) such that the coercivity of IV holds in the sense of Theorem 9.6.

Then for arbitrary £ € L7(0.oc:V*) wye V| uy € H there exists u such that
ue C([0,00); V), u' € LY, (0. 00: V) u” € LY (0. 50: V) gng

Equation 3.41. (15.1)

w(8) + [N ("] (8) + Quit) + [M(u'. )| (£) = F(t) for a.a. t € (0. 5¢).

Equation 3.42. (15.2)
w(0) = un, rr."({}] = Ui.
The proof is similar to that of Theorem 11.4, based on Remark 14.3.

>From Theorems 14.5, 11.9 we obtain

Theorem 15.2.

Let V" be a closed linear subspace of W'7(€2), 2 < p < ¢, 2 ¢ " a bounded domain with
sufficiently smooth boundary. Assume that the functions

aj: Qo x B" T IV (0,00:V) =R, j=0,1,....n

satisfy the assumptions of Theorem 11.9, N has the form (11.14), @: V — V* satisfies the
assumptions of Theorem 14.5,

M LP (0,00 V) % L (0,00: V) — L (0, 0c; WH02(0Q)*)
is of Volterra type and satisfies the assumptions of Theorem 14.5 for arbitrary finite 1" = 0.

Then for arbitrary ¥ € Lit, (0. 5 V) g e v ui € L2 () there exists € Lip.(0. 52 V)
such that 4" € L, (0. o 1’)’ u” e L (0. 0c; 1’*)’
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w’ + N{u )+ Qu+ M(u' u)=F in (0,0c), wu(0)=ug, u'(0) =u.
Now we formulate a theorem on boundedness of the solutions = of (15.1), (15.2).
Theorem 15.3.

Let the assumptions of Theorem 15.1 be satisfied such that with some 2 = 0

Equation 3.43. (15.3)
((N))@®). v(t))y = ea|le®)|}.. te€ (0.)

for all v € Ly,.(0.5¢:V) and with some nonnegative ®1. ®2 € L'(0,¢) | a positive
2
constant & < 1, ¥(7) = [[v(7)[| 5 we have

Equation 3.44. (15.4)

[[M (e, )] ()] < ®1(t)sup y” + Ba(t), ¢ (0,5¢)
[0,#]

Finally, let £ € L7 (0. oc: V™),
Then for a solution u of (15.1), (15.2), (1) =Iu'()ll% is bounded in (0.2,
u’ € LP(0.>: V) and

Equation 3.45. (15.5)
(Qu(t)]. u(t)) is bounded for t € (0. oc).

If

Equation 3.46. (15.6)

(Qit. ) = callit|[fy1 2y for all HEV

with some constant 3 = 0 then

Equation 3.47. (15.7)

(&)l 2(ay is bounded for t € (0, ).

Proof.

Applying both sides of (15.1) to «’ and integrating over [0 2], we obtain

Equation 3.48. (15.8)
[H.”, rr."] + [_-""'T(H.’:], H.’] + [er., rr.’] + [ﬂl-fl:u.’, i), H."] = [}*', H."],

By Remark 6.7 and (6.9)

Equation 3.49. (15.9)
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1 I 1 3 1 . 1
() = S @) = SI0 O = Su(0) = 5u(0)

and by (14.8)

Equation 3.50. (15.10)
1 - 1 -
[Qu,u'] = E::Q”.(]')_ u(1)) — E{QH.('[}:]. u (0}

Further, by Young’s inequality

Equation 3.51. (15.11)

[[M (uf, u), w']| < _—f [l (£)|Y- dt + f | [ (!, )] ()5 dt.
P Jo 0

g

Equation 3.52. (15.12)

Fa| < '—f S BS-dE + f F3-. dt.

Fli < — [ @I+ oo IO

Choosing sufficiently small = = 0, from (15.3), (15.4), (15.8) — (15.12) we obtain the
inequality

Equation 3.53. (15.13)

1 e ] T ] 1 =y Nkl R
5;;(1 )+ EA lu'(E)|F-dt + 5‘\(-?”-(1 Jou(1)) <

T T
1
const f [ (!, )] (E))}-. dt —i—f | E (- dt| + ;y({})—l—
1] =

0

|- 4T T T
3{(}:;{“}. u(0)) < const |14 r-:llpy"f Dy (t)dt }f b (1) 4 f | E (Y - dt

[0,T 0 I 0

Since & < 1, ®1. @2 € LH0.00) F e L(0,5¢: V*) we obtain from (15.13) that #(1') and
{Qu(T). u{1)} are bounded for 1" € (0.20) and u' € LP(0. 21 V) Finally, (15.6) implies
(15.7). o

Now we consider examples for operators V. M. @ which satisfy the assumptions of Theorems 14.5 - 15.3.

The operator in Example 10.12 satisfies the conditions on V in Theorem 14.5 and the operator in Example,
considered in Section 12 satisfies the conditions on V" in Theorem 15.2. In the case b. by = c2 with some positive
constant ¢2 and bo = 0 the assumption on IV in Theorem 15.3 are fulfilled.

It is easy to show that the assumptions on A in Theorem 14.5 are fulfilled if e.g.

Equation 3.54. (15.14)

[M (v, u)] () = f glt, o, [G(e)] (). [Galv)|(t))wdtdx —I—f ha(t, o w)wdo
‘

\‘?J' r
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wov € LP(0.T:V)., we LP(0.7: WP

where ¢ is a Carathéodory function satisfying with some positive constant = << p — 1

Equation 3.55. (15.15)

lg(t,x., 61, 62)| < const[l + |61|7 + |62]7].

G1. G2 LP(0. 11 V) — LP(Qr) are linear and continuous operators, 0 < & < 1/p I'r = (0. 17) x 00
o e  P(0.1:7V) = B

is a measurable function, satisfying

B2 (t. @z u) agr, ) < comst [1 4 [|ul| oo ra] -

Further, the assumptions on A in Theorem 15.2 are satisfied if (15.14), (15.15) hold for all € (0. 5¢ ),
Gi.Ga: LV (0.5: V) — L (Q)

are linear operators of Volterra type and for all fixed finite 7'=> 0, they map L"(0.1:1V) into L7(Q7)
continuously.

The assumptions on A4 in Theorem 15.3 are satisfied if

lg(t. . 6. B2)| < By (8)|6h |* + ®alt). + e (0.x)

with ®1. ®2 € LI(0, oc) N L (0, *x), 0< A< 2/gandforall ¥ € L::H,(Qx)
1G1(0)|Lriq,) < const|v|r2(g,). € (0,00).

Finally, (15.6) is satisfied for the operator @ of the form (14.29) if for a.a. = € @, all § = (§0: €12 .. &) € R*H

Equation 3.56. (15.16)

"
Z aji(x)éi& + d(x)éd = ealé|?
d.1=1

with some constant ez = 0,

Now we shall formulate conditions which imply a result on the stabilization of solutions u of (15.1) as — oc.
For simplicity we consider the case when N is “local”, i.e. [V (u)](t) = [N(£)](u(t)) where N (t) : V — V7™ jg
defined for all ¢+ = 0 and M = 0.

Theorem 15.4.
Assume that the operator VL. (0.0c:V)— Ly (0.0c:V*) s given by

[N(u)](£) = [N(®)](u(t)) where N(t):V — V* satisfies the assumptions of Theorem 7.1
such that for all ©# € V'

Equation 3.57. (15.17)

(INB)(E), &) = ealt + 10| &}
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with some constants # = 7 — 1 (g=.3), 2 590, (In this cgse N(t) is uniformly monotone, see
Defipition 2.15.) The operator & > 0 and satisfies () and (15.6). Further, there exist
, a continuous function with

Equation 3.58. (15.18)

lim® = 0, f O(t)7dt < e
< 0

such that

Equation 3.59. (15.19)
[£(t) — Fuc|lv- < @(2)

and there exists a solution - € V" of

Equation 3.60. (15.20)
é”-x =F.

Then for a solution « of (15.1) with A = 0 we have

Equation 3.61. (15.21)

JlilIl lu’(t)]| = 0,

Equation 3.62. (15.22)

f (t+ 1) o ()]}t < . ] (t+ D! (D)5 dt < xc
0 0

where 0 < 3 < [2u — (p — 2)| /P and there exists w € V" such that

Equation 3.63. (15.23)

1 const 1
lult) — w|y < mm

where A = p/(p— 1) = 1

Proof.

Since u== €V and so its derivative with respect to ¢ is 0, we may apply (15.1) to
u’ = (u—u=]’ and thus, integrating over [0: 27 we obtain by (15.20)

Equation 3.64. (15.24)

T T
f {u (), u'())dt +f (N (] (), u'(t)dt+
0 0
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T T
f Qu(t) — uac]. [u(t) — us]dt = f (F(t) — Foc,u'(t))dt.
0 0

By using the notation ¥(t) = Ilu"(£)[17;, we obtain by Remark 6.7 and (6.9)

Equation 3.65. (15.25)
T " ' [ 1 Rl 1
f W), w'(t)ydt = Sy(1') — Su(0)
0 = =

(see (15.9)) and by (14.8)

Equation 3.66. (15.26)

T -

1]
1 1y g g \ 1 1y 4
;t\l‘?[h‘.(l Y —thoe |, (1) — vac) — at\Q[H.l:{}:] — e |, w(0) — o).

Further, by Young’s inequality

Equation 3.67. (15.27)

T

|f (F(t) — Foc,u'(t))dt] <
1]

.

3 T 1 T
— | ) dt+ Tf | E() — Fucl|y-. dt.
P Jo =5 Jn

Choosing sufficiently small £ = 0, by (15.17), (15.19), (15.24) - (15.27) we find

Equation 3.68. (15.28)

1 . T 1, -
ay;('l') + %/ (t + 1)"|u" ()|} dt + E{Q[fr.('l') — o), (T — uoe ) <

T
1 1 -
c-:)nn'tf [®(#)]9dt + 3”(“) + S{Q[”'(“) — o], w(0) — 1o
0 < <

Since the right hand side is bounded for all 1" = (0 by (15.18), we obtain the second part of
(15.22), i.e.

Equation 3.69. (15.29)
f (t + 1)l ()|} dt < .
0

Consequently, for any 11 < T2 we have

Equation 3.70. (15.30)

T:
[u(12) — u(T1)|lv = [[(Su’){T2) — (Su’)(T1)|v = ||/ u'(t)dt]|y <
Ty

126
XMLmind XSL-FO Converter



SECOND ORDER EVOLUTION
EQUATIONS

T = N
' T FETI; )
frl [’ (£ dt = frl 7& n 1))‘5’” (t+ M| (8)||v dt <

T, 1 /g Ty 1/p
—dt (t + 13" ||u ()] 5-dt
L L ey

where A = p/(p — 1) > land thus PA/g = Alp— 1) = p,
Thus, for any = = 0 there exists 1 such that for 1h < 11 < 13
[ (T%) — w(d)]|v < e

Hence, there exists w = 17 such that

Equation 3.71. (15.31)

Tll_l\l; [ () — wlv = 0.
In order to prove (15.23), take the limit 72 — +o¢ in (15.30), then we find

=@l < [y de<
Ty

= 1 1,.""‘1‘ = ’ , o

1 1 L/ poc
t - Dy |[u’ (0)]|F- dt,
(et [ oo

i.e. we have (15.23).

The first estimate in (15.22) can be obtained as follows. If 0 < 3 < [2u— (p — 2)|/p then by
Holder’s inequality

>

f (t +1)7 |u’(t)]| 3 dt < const f (t + 17 |u' ()]} dt =
0 0

con.-:tf (t+1)72n/p [(a + 1)3“!”'””.’(a)”?,} dt <
0

2/

= Ca (p—2)/p == 2
const {f (t+ 1]'1.1-—'22 fﬁf} {f (£ + 1y |u'(t)] dt} < 00
0

1]

—HJJ_E" _— . . . .
because of the second part of (15.22) and »—2 <=1 In the case p = 2 the first multiplier in
- == - . A—2ufp
the last term is the L™ (0. ) norm of the function t  (t + 1)7 =/,

Now we apply again (15.1) to %’ = (# — =)’ and integrate over [11. 12 then we obtain by
(15.20)

T2 T:
f (" (£), u'(t))dt +f (N (] (), u'(t)dt+
T

Ty

Ta N Ta
f (Q[u(t) — vac]. [ul(t) — woe] Vet = f {F(t) — Fac,u'(t))dt,
T

T,

whence, similarly to (15.28), we find

127
XMLmind XSL-FO Converter



SECOND ORDER EVOLUTION
EQUATIONS

Equation 3.72. (15.32)

1 ; T ,
S y(Tn) — y(1)] + 2 f (t -+ 1) [ (8)[F e+
2 2 Jr

Ty

;{_{Q[ar[fﬂ—r: e | u(T2)—u _3—;{_(_)jra|[i 1)—tac). u(T1)—us) < const f B (t)]?dt.
F i TI
Since @: V' — V* is a continuous and linear operator, by (15.31)

- 1_}111 HQ[u(Ty) — uac]. u(Th) — use) — {Qu(Ty) — uoc]. u(1h) — usch} = 0.
1l 2—oc

thus (15.18), (15.29) imply

lim [y(11) — y(12)] = 0.

T . Ta—oc

Thus lim7 - y(1") exists and is finite, further, by the first estimate in (15.22), it must be 0,
i.e. we have (15.21) which completes the proof of Theorem 15.4 o

The following example satisfies the assumptions of Theorem 15.4.

Example 15.5.

Set [V (u)](t) = [N(#)][u(t)] where
(IN(®)](@). ) = (t + 1) f {Wﬁ]"‘? > (D) (D, ) + || i |
Q =
i 7€V whereV =Wo () orV = WhP(Q) p>p—1p=2 ar —0and

(Qii, ) = ai(D;i) (D &) + die |, 4.7€V
Qi) = [ |3 au(Dyinoie)

G.i=1
where the functions @i d € C(2) satisfy the (uniform ellipticity) condition (15.16). Finally,
F(t) = Foe + ®(t)g where Foo € LP(Q)), g € LY(Q).

It is well-known (see, e.g. [2]) that for a bounded domain €2 C E™ with sufficiently smooth boundary and
Y 3 R . . = 2o . . .
Fie € LP(£2) there exists a unique solution © € W="(£2) solution of the linear equation

— Z Dy(aDjit) + dit = F in €

di=1
with the boundary condition
i |an=0. (8:Y0) |ag= 0.

respectively, where @' denotes the “conormal derivative” of i on 96 (with respect to the differential operator in
the differential equation). Thus we have a solution of (15.20).

2.1. Problems
1.

Show that the operator A4 defined by (15.14) satisfies the assumptions of Theorem 14.5.
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Show that the Example 15.5 satisfies the assumptions of Theorem 15.4.

Formulate and prove an existence theorem on problem (15.1), (15.2) with the operators A = 0, V. €
considered in Problem 3 of Section 14 with arbitrary ¢ € (0. 2),

Formulate and prove an existence theorem on problem (15.1), (15.2) with the operators M = 0, V. €
considered in Problem 4 of Section 14 with arbitrary t € (0. ),

3. 16 Semilinear hyperbolic equations

In this section we shall consider the equation (14.1) in the case when ¥ = 0 and operator A{ has a particular
. . 1.2 2
form (see (16.2)), further, 17 is a closed linear subspace of W' (), (p = 2), H = L*(22),

3.1. Existence of solutions in [0.7]

Theorem 16.1.

LetV C W'2(€2) e a closed linear subspace, » = 2, H = L*(€2), Assume that@: V — V*
satisfies (132) (see Section 14) and

Equation 3.73. (16.1)
(@it 1) = collii]|F1.2q for all i€V
with some constant co = 0 (i.e. Q satisfies (15.6)).

Let operator M (1. u') have the form

Equation 3.74. (16.2)

[M (u, u)](t. x) = ()R (w(t)) + 0tz u)u'(t) where

Q=R 0 Qrx LPQr) R

are measurable in r and (. ), respectively, *’ has the Volterra property and
() — w in LHQr) implies ¢ (t. oz ug) — (b o u) for aa. (£r) € Qr.

for a subsequence. Further, there exist positive constants ¢1. c2. €3 such that

Equation 3.75. (16.3)
o1 < oplr) e, 0< ot oiu) < ea;

h : & — I is continuously differentiable function satisfying
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Equation 3.76. (16.4)

b}

&

n—2

g

hig) = 0. |R'(n)] < const || where 0 < p <

(In the case n = 2, 2 + 1 may be any nonnegative number.)

Then for any £ € L*(0. 75 H) g € V, uy € H there exists # € L= (0,13 V) such that

Equation 3.77. (16.5)

w' € L0, 7 H), "€ L2(0.T;V*),

Equation 3.78. (16.6)

w(t) + (Qu)(t) + ()R (u(t)) + ¢t o uy'(t) = L) for a.a. £ € [0, 7],

Equation 3.79. (16.7)

w(0) = up,  w'(0) = uy.

Remark 16.2.

One can show (see, e.g [93]) that H is dense in the Hilbert space V°*, thus

Equation 3.80. (16.8)

HcV'cCcH”

is an evolution triple, hence

L2071 H) © L2(0.7:V*) © L2(0.17: H*).

Consequently, since

u” e L20.7: V"), we have (u')’ € L0, 7, H")

which implies by ' € L* (0.7 H) and (16.8)

u' e C([0.T]: v*).

Since 1 € H € V* the initial condition ©(0) = 1 makes sense.
Proof of Theorem 16.1.

We apply Galerkin’s method. Let 1. 2. ... be a linearly independent system in 1~ such that
the linear combinations are dense in V". We want to find the mn-th approximation of w in the
form

Equation 3.81. (16.9)
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m

() = 3 gim (EJun where g, € W20, 1) = H?(0, 1)
=1

such that forall 7 = 1.....m

Equation 3.82. (16.10)
(tty (), i} + ((Quan ) (2), wi)+

{p() R (g ) w4+ (b (E, s gl (£), wy Y = {(F(t), wy ),

Equation 3.83. (16.11)
tin ({}) = Uik ”-':” ('[}:] = Unl

where tan0. thm1 are linear combinations of . . ... satisfying

Equation 3.84. (16.12)

(Umo) = woin Vi (tm1) — w1 in H.

By the existence theorem for a system of functional differential equations with Carathéodory
conditions (see [32]) there exists a solution of (16.10), (16.11) in a neighborhood of 0. The

maximal solution of (16.10), (16.11) is defined in [0 7. Indeed, multiplying (16.10) by Zjm (£)
and taking the sum with respect to j, we obtain

{”'IJTJ “) ”—:”(t)} + {(Q”‘J”)(t:}‘ ”‘l:n(t)}_'_

()l () wl (E)) + (0t s wgn Jul (), u!

" T

“)} = {PU} l‘l‘-:”(t:]:?'.

Integrate the above equality over [0: ], we find by (14.8), Remark 6.7 and Young’s inequality

Equation 3.85. (16.13)

1 1, .
§||”':r.l(t:]||?l + 5':\[:@”1”)“)- ”-m(t)f-i_

:
fp(:r).l'i(fr.,,,(t))ff:r+f f Y1 (T, 23 g ) [l (7)) ddT =
3! o Jo

f 1 1
f F(r)u! (r)dr + 3||fr.f” (U)H?; + 3{('2”"” (0), i (0) )+
0 Z P

1 (7 1 [
f () h (e (0))dr < 3] £ ()5 dr+ af |u!, (7)]|3 d7 + const
8] <Jo <Jn
where the constant is not depending on rn and ¢, because of (D2), (16.3), (16.4), (16.12)

|h(n)| < const(1 + |p|2+?)

and by Sobolev’s imbedding theorem (see [1] and also Theorem 4.17), L¢72(€) js
. . . 20
continuously imbedded into W *(£2) since

2 I — 2

g & & &

p+ 2 < .
n—2 n—2 n—2
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By (12), (16.3), (16.4), (16.13) implies

Equation 3.86. (16.14)
i
I Ol < e {1 + [ ol dr}

with some constant ¢4, not depending on ¢ and m (but depending on [[wollv Jlutlle, 111 £2 (5 )
.) Thus by Gronwall’s inequality

Equation 3.87. (16.15)
|l ()3 < const .t e [0.T).

The constant is not depending on ¢ and m (but depending on [lollv:, llualle 11 22 (009). Thus
(16.1), (16.13) imply

Equation 3.88. (16.16)
|t (D)7 < comst .t € [0, 7.

By (16.15), (16.16) the maximal solution t: of (16.10), (16.11) is defined on [0 27 and (i)
is bounded in L> (0.1 V') (u7.) is bounded in L (0.7 H),

Consequently, there are a subsequence of (1 ), again denoted by (), and u € L>(0. 13 V)
such that

Equation 3.89. (16.17)

() — u weakly in L7(0,7°:17),

Equation 3.90. (16.18)
(u!) — u' weakly in L™ (0.1 H),

which means that for any fixed & € L' (0. 75 V") and g1 € L'(0, 1 H)

T

T
f {g (1), ton ())dt — {g(£), u(t))dt,

1] 0

T T
f (g1(t),u! (E)dt — f (g1 (£). ' (£))dt,
i 0

because tm.u (and “.:u') are linear continuous functionals on L'(0.7:V*) (and
LY0. T H), respectively).

Since the imbedding of W () into L*(€2) is compact (if € is bounded and its boundary is
“sufficiently good”, see Theorem 4.1), by Theorem 10.1, (16.17), (16.18), for a subsequence

Equation 3.91. (16.19)

(1) — w in L2(0.1: H) = L*(Q7) and a.c. in Qr.
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As@Q:V — V*isalinear and continuous operator, by (16.17), for all v £ V'

Equation 3.92. (16.20)
{Qun (1), v = {Qu(t), v) weakly in L(0,1)

and by (16.18)

Equation 3.93. (16.21)

d
(i (£), ) = =, (8),0) = ((8). )

with respect to the weak convergence of the space of distributions P’ (0. 1),

Further, by (16.19) and the continuity of i’

Equation 3.94. (16.22)
@b (e (8)) — @(x)h (u(t)) for ae. (t,.x) € Qr.

By (16.3), (16.4)

Equation 3.95. (16.23)

lp)h’ (wom ()| 2 (2 = comst A" (wn (1)) ]| 2 () <

/o /o

1/2 1/2 f
const [f |u.,,,(t]|2':-£’+1:'ff:r} = const {f |rr.,,,(t]|'f”ff:r} < comst ||, (£)]| 1 /2
0 Q

2n
because for 2(2 + 1) = a1 = =5 we have by Sobolev’s imbedding theorem (see, e.g [1] and
also Theorem 4.17)

L) € V si 1 - 1 1 n—2
) C Vosinee — = — — — = .
o 2 n 2n

Thus by the Cauchy-Schwarz inequality the sequence of functions w(x)h'(tm(t))v js
equiintegrable in € for each fixed v € V" and a.a. € [0.1]. So by Vitali’s theorem for a.a.
te 0.1

Equation 3.96. (16.24)

M—oC

lim f )b (g (1))odr = f wlx)h (u(t))vdr.

] ]
Further, by the assumption of our theorem, for a.e. t € [0. 1] for a subsequence
Equation 3.97. (16.25)

i (t, 3ty ) — 0 (E, 1) in LE(Q).

hence for all fixed v € V € H,aa.t € [0.1]
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Equation 3.98. (16.26)

f it a0 g ul, (Fvdr = f [ (t, 23 i) — 40 (t, 3 u)|ul, (F)odo+
Q £«

f (b, ww)ul (Heds — f i [t w w)u’ () vds
0 0

because for a.a. £ € [0- 17 u,,(t)is bounded in £*(£2) and

rE) = u(t) weakly in H.

”’J”

Wy — N [ . . .
Let v £ V" be an arbitrary element and "V = 2o j=1 i g sequence, approximating « with
respect to the norm of 1. By (16.10) we have

(! () v + (Quan (£), v ) + (B (o (). v b+
{h (b, w3, (), vy = (F(t), vw)
which impliesas N — =

{ull (1) v + {Qugn (1), 0 + {p(@)h (1) (). v+

7
r'JH

{r(t, mr g )ul (£).v) = (F(t), v} for a.a. t € [0.71].

By using (16.20), (16.21), (16.24), (16.26) we obtain from the above equality as rn — =

Equation 3.99. (16.27)
litn {ulr (£), v} + {Qu(t), v} + {lx)h (u)(t), v)+

M—oC

{r(t, o u)u' (), vh = (F(£), v).

Equality (16.27) means that for a.a. t € [0. 17 u;,(t) is weakly converging to an element of 17

and this limit as a function of ¢ belongs to £° (0. 73 V*) Thys u” € L*(0. 73 V*) and it is not
difficult to show that

Equation 3.100. (16.28)

(u ) — u" weakly in L20.7:V*).

I

According to (16.17), (16.18) u € L= (0,12 V) w' € L>(0.1% H) thus Theorem 6.6 implies
u € C(0.1: H) and for ¢ € C™[0. 1] with the property ©(0) = 1 #(1") = 0 we have for all j

T T
f (' (£), wikd (H)dt = —{u(0), w;) — f {u(t), wry ' (£)dt,
0 0

T T
f ful (), wih (D)dt = — {1y, (0), 20 — f {thyn (), 2 0" (£)edt.
0 0
Hence by (16.11), (16.12), (16.17), (16.18) we obtain as m — =
{wo,wjp = lm (o, wip = lm {um(0), w;) = (u(0), w;)
for all 7 which implies #(0) = uu,

Similarly, since ' € L>(0, 15 H) w" € L*(0.T:V") by using Remark 16.2, we obtain
u'(0) = 11 and so by (16.27) Theorem 16.1 is proved. o
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3.2. Uniqueness and smoothness of solutions

Now we formulate and prove a theorem on the uniqueness and continuous dependence of the solution on £, g,
.

Theorem 16.3.
Assume that the conditions of Theorem 16.1 are fulfilled so that ' (t. =2 u) = ¢*(x) with the

property

Equation 3.101. (16.29)
0= tw(r:l < const,

R'"is continuous and satisfies

Equation 3.102. (16.30)
[R"(1)] < comst|n|L.

Then the solution of (16.6), (16.7) is unique. Further, if % is a solution of (16.6), (16.7) with
P = Fj ug = uj, ur = wi(j = 1. 2) then for

L]
w = w1 —uz and w(s) =f [11(7) — wa(r)|dT
0

we have

Equation 3.103. (16.31)
lerts) |17 + ()} <

xo(Es i) (11— fallfaq,y + b — Bl + lud =l ]

where X0 is a function, the values of which are bounded if I £5llz2 (., l[ugllv, luiller are
bounded and

i
filt) =f[] Fi(r)dr.

Proof.

Assume that % is a solution of (16.6), (16.7) with £ = £ uo = uf, w1 =ulli = 1.2), Let
s € 0.7 pe an arbitrary fixed number and apply (16.6) (with ) to «, defined by

v(t) =f [u1(T) — ua(7)]dr if 0 <t < s and
'

v(t)=0ifs<t<1T.

It is not difficult to show that
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Equation 3.104. (16.32)
v eCO.T;V), o' e L0, 7:V),
vit) = —w(t) = ua(t) —ur(t) if t < sand v’ () =0 if t > s

and thus
(! (1), v (6)) + (Qui(t). w(0)) + () [ (£)) — B (ua ()], w())+

('’ (8). v (8)) = (F1() — Fa(t). v(t)).
Integrating over (0. s), by (16.32) we obtain

Equation 3.105. (16.33)

[ @@= [ @ oena+ [ e o.o0e -
[ i)~ Extor ooyt [ o (a1 0) - W (aa(®)]. w0t
By Remarks 6.7, 16.2 and (16.32)

[t ooar = [ 0,00t - w0 00) -

Sl = 3w — (/(©). v(0))

Since v'(s) = 0, integrating by parts, by (14.8) we get from (16.33)

Equation 3.106. (16.34)

%”u,(,‘;)“?, + %(Q‘f'(ﬂ)- v(0)) + f U

W () (t}ri:r} dt =
o LWa

A (1 (t) — Faft). v(t)) + fsz w' (0)v(0)dr + fsz () (0)e (0)do—
A ()M (wa (£)) — A" (ua(t))], v(£)}dt + %H“-‘(U)H?r-

By using the definition of «r and the notation *'1 (5) = Jy w(T)dT we have

Equation 3.107. (16.35)

v(l) = f w(T)dT = wy(s)

0

and so by (16.1)

Equation 3.108. (16.36)
(Qu(0). v(0)) 2 col|v (O = coflwa ()T
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f .
By using the notation filt) = f, j“.r'('r)”"r, we obtain by integration by parts and Young’s
inequality

Equation 3.109. (16.37)

[ #0 - .oy =1 | { JRTCE fé(t)]f‘(t)fft} da| —

& 1 s , 1 .
dﬂﬁLﬂﬂ—hWWW“}W5§A”“mm“+?m‘hMMM-

Similarly, by (16.35)

Equation 3.110. (16.38)
|f w' (0)0(0)dir| < |juwy ()| dE + Cale)||w' (03
]

and by (16.3)

Equation 3.111. (16.39)
|f () (0)e (0)die| < £l (8)]|F dt + Ca(e)|[uw(0)]|%.
]

(Ci(2) denote constants, depending on =.)

Finally, the last term on the right hand side of (16.34) can be estimated as follows: by (16.3),
(16.30) and Lagrange’s mean value theorem

Equation 3.112. (16.40)

| i {p(x) [ (w1 (1)) — B (ua(t))], o ([))dt] <

COIIHt/‘H {f [h'(u1(t)) — fi’(rtg(ﬁ))”t‘(t]|ff:r} dt =
0 02

con.-:tfk {f sup{|h”(7)] : g € (a, b) }ui(t) — rr.g(t)||p(at)|ff:r} dt <
0 0

const fH {f [Jua (£)]€ + |ual(t)|]|uilt) — fr.g(t]||g~(t:]|d:r} dt
1] 02

where
a = minfuy(t), ua(t)}, b= max{uy (t), uz(t)}.
Since

2n

&

= q.
n—2 !

on =

V is continuously imbedded into £ (€2} and L (£2), and so we may apply Holder’s inequality

1 1 1
byn T2 tg=1
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Equation 3.113. (16.41)

fﬁ {f [Jui(t)]® + |fr.g(t:l|"]|u-(a§)||c‘(tj|ﬁ‘:r} dt <
o e

A
mmf[WMWWM%+WMWMMmﬂWWWW“WMmﬁ
0

conh'tf [a (T + [Tl o 1o (0] Lo (et
1]

Since 1. 12 € L¥ (0.1 V) and according to the proof of Theorem 16.1, their L™ (0.7 V)
norm can be estimated by a function of [¥ill 2@y, l[udllv 41l the values of which are
bounded if £l 2., ludllv Iyl are bounded (see (16.14) — (16.16)), we obtain from

(16.40), (16.41) and v (t) = wi(s) — wi(t) (for t < s) that
Equation 3.114. (16.42)

|f () [A (ug () — B (ua(t))], v(£))dt] <

0

X(F ) f ()l [0 (8)] o syt <
0

X (3, ”-'f)f lw@ller w0 ey + Il ()| Lo o] dt <
0

X (5 g ) {TIIM(H)II?- +C(f)fu (@13 + lun @®II-) dt

where (5. i u1) is bounded if 1£7ll 2., lugllv il are bounded.

Choosing sufficiently small = = 0, we obtain from (16.34), (16.36) — (16.39), (16.42) with
some X[ Fj. uh. uy)

()13 + llur ()7 < R(Fy . ui) f [lw(®)F + lw ()15 1dt+
N}

o [Ilf1 = Fallfaq.y + (@) + o' O3]

Hence by Gronwall’s lemma

() + lwa()I <

o e (I = Pl + WO + 1w/ O]

Thus we have (16.31) and, consequently, the uniqueness of the solution of (16.6), (16.7). o

If £, uo, uy satisfy certain smoothness conditions then we have smoother solutions of (16.6), (16.7).

Theorem 16.4.

Assume that the conditions of Theorem 16.3 are fulfilled so that the restriction of (the linear

and continuous operator) @ : V' — V*to V' 1 H?(Q) s continuous operator from H7(€2) into
H = L2(4).

Equation 3.115. (16.43)
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Fle L3(Qr). uw e VNHYQ). w el

Then there exists a (unique) solution

Equation 3.116. (16.44)
we L<(0.1:V)

of (16.6), (16.7) satisfying

Equation 3.117. (16.45)
u' € L<(0,15V), w'" e L™(0,1; H).

IfQ: V — V* s such that for any

Equation 3.118. (16.46)
feL2(Q). Qi= fimply i HYQ) and
il 2y < comst]| f||n2i

then for the solution « of (16.6), (16.7) we have

Equation 3.119. (16.47)

we L0,V nH Q).

Proof.

We apply Galerkin’s method and, similarly to the proof of Theorem 16.1, we want to find the

solution  of (16.6), (16.7) as the limit of functions .. given by (16.9) with 9im € H*(0.1"),
satisfying (16.10), (16.11) and instead of (16.12) we have

Equation 3.120. (16.48)
(tmo) = wp In VN HQ(Q). (1) = uy in V.

Since k' is continuous, we may differentiate (16.10) with respect to #, so we obtain

Equation 3.121. (16.49)
(ul (8) wi) + (Quiy (£), ws ) + (e )h” (g July, (£, w )+

(W (w)us,

(). w;y = (F(#), wy .

Multiplying (16.49) with @im(t) and taking the sum with respect to 7, we find

Equation 3.122. (16.50)

{”:3}“) ”'l:l:;(t)} + ‘:Q”—:”(tj- ”'::.l (fj} + '::'r?(:rjhﬂ(”'”-')”‘l:n(t)‘ ”'l:l:.l “)}4_
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(i (g, (), uin () = (7 (£), ulh ().
Integrating both sides of (16.50) over (1. 1), we obtain (similarly to (16.13))

Equation 3.123. (16.51)
1
_””m(f)” H +3 {Q”m(f) ”m [:t:]}—l_

ff ()" (s Y1t (T, ﬂmdwff () [, (7)) 2dzdrar =

f {f T:] ”:r.l T)}fh_—l_ _””m (G)”” + {Q”m [:0:] ”:r.l (CI)}

Further, multiplying (16.10) by Yim (1) and summing with respect to 7, we obtain
lain ()17 4 (Qutan (8, 057, (D)) + () B (1t ), e, (£))+

(o)l (£ up (£)) = (F(), uip (£)),

thus

s @)117 <

[Ilf (0)] 21 + [ Quisn (Ol 1 + 2|1’ (wn(0)) |1 + e3]1s7, (0)] H} [ (O] -

So by (16.48) and Sobolev’s imbedding theorem (see (16.23))

Equation 3.124. (16.52)
lu! ()| 4 = const for all m

since by the assumption of our theorem
”é“:r.l.l:ﬂ) ” H= C’C'nﬁt'”'”-m. (U)” H=2()-

Finally, the third term on the left hand side of (16 51) can be estimated as follows: (similarly

to (16.41), (16.42)) by Holder’s inequality with = Tt 3 + 7

Equation 3.125. (16.53)

| f U ()" um.(r))-u-:.,.(r)-u-::,.tr)dm] dr| <
const f [ | ol ol (ijm} ar <

wnﬁtf [t (1| o gy ltt s (T o gy Nty (|2 ] i <
wllhtf [Fttsns (P Nty (Tl ez () | 2] dr <

i
2
const f lato (v s (7)] s < comst fn [t (I3 + s (I3 ] dr

140
XMLmind XSL-FO Converter



SECOND ORDER EVOLUTION
EQUATIONS

since () is bounded in L7 (0.1 V),

Thus, (16.51) - (16.53) (16.1), (ii) and Young’s inequality imply
[}
[l ()17 + [y, ()7 < comst {1 +f [l (7 + s, (1] f’-*}
0

and so by Gronwall’s lemma for all m, t € [0. 7]

Equation 3.126. (16.54)

s, ()17 + [lus, (]F < const.

Hence, similarly to the proof of Theorem 16.1 we obtain

(u!,) = u' weakly in L= (0.7 V),

(u) — u" weakly in L>(0,7; H),

we have (16.17), too, for the (unique) solution of (16.6), (16.7).

If (16.46) holds then from the equation (16.6) and (16.44), (16.45) we obtain directly (16.47).
O

Remark 16.5.
According to [51] the operator Q given in (14.29) satisfies (16.46).

3.3. Solutions in (0.x)

Similarly to the previous existence theorems, one can prove existence of solutions to (16.6), (16.7) for
t e (0, 00)

Theorem 16.6.

Assume that the conditions of Theorem 16.1 are fulfilled for all 1" = 0 with

i Que x Q) = R,

satisfying (16.3) for all # € (0.2¢). Then for any ¥ € Li,,.(0. ¢ H) ug € V, w1 € H there

exists € Lis.(0.5¢: V) sych that v’ € LS. (0.0c: H) "€ LE, (0.5¢:V*) and for aa.
t € (0.2) (16.6) and (16.7) hold.

Theorem 16.7.

Assume that the conditions of Theorem 16.4 are fulfilled for all finite 1" = 0 and the
conditions of Theorem 16.6 are satisfied, too. If

F'le L (0.0c: H), ug € VN HAQ). wuw eV
then there exists a (unique) solution of (16.6), (16.7)
w e L5 (0, 00; V) satisfying v’ € LS (0,00 V),  w™e L0, 50; H).
Further, (16.46) implies t € Lis,.(0. 00: VN H?((2)),

Now we formulate and prove a theorem on the “boundedness” of the solution of (16.6), (16.7) for t € (0. ¢},
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Theorem 16.8.

Assume that the conditions of Theorem 16.7 are fulfilled such that ¥’(x) = é =0, on
" 2 -
assuming only £" € Lj,,.(0.2¢: H) and 4 is a solution of (16.6), (16.7) for € (0. 5¢),

If with some 15 = 0, £'(t) =0 fora.a. t = Tuthen

Equation 3.127. (16.55)

||fr.’(t)||?, + E‘.[]”H.(?f)”?.- + 2c4 f hiu(t))dr+
0

i
f [f c,.'T.‘(:r)|fr.’(T:l|2ﬁ‘:r} dr < const,  t € (0, 00).
o Wa

Consequently,
1/2

we L0, 0c: V), w'e L0, oc: H) and 120" € L0, ~c: H).

Further,

Equation 3.128. (16.56)
Fe 20, 0c: H) and &> 0

also imply (16.55). Consequently,

Equation 3.129. (16.57)
lu'(t)lln < const e teln, o).
Finally, if £ € L™ (0.50: H) and & > 0 then

1 i
Ff ' ()5 dT < const
A

and thus

Equation 3.130. (16.58)
'
' (D17 + collu ()] + 261 f hiu(t))dr + Ef |:f t_?:(:r)|u.’('.“)|2d:r} dr < ¢t
02 1] 02
with some constant .

Proof.

Let u be a solution of (16.6), (16.7) for t € (0.5¢). Applying (16.6) to #'(t) € V' we obtain
that for a.a. t € (0. )

Equation 3.131. (16.59)
(), w'(£)) + {Qu(t), v’ ()} + {plx)h (u(t)), u'{t)+

() (8).u'(8)) = (F(8), u' ().
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Integrating over (0. 1) with t = 1%, we find, similarly to (16.13)

Equation 3.132. (16.60)

1 9 1 N "
3||rr.“'[t:l||], + 3<\er.(t], w(t)) —|—/ wlx)h{ut))de+

02
f -
f |:f t_.".'(.'r)|rr."('.":l|2d:r} dr <
0 0

1 TII ) 2 1 TII ; 2 i}
2/, £ () dT + 2/, [u' ()] 7dT + €
where the constant ¢ is independent of ¢. Thus
Equation 3.133. (16.61)

[}

wmmigm+fbwmﬂﬂﬁﬁ
0

with some constant ¢4 (independent of ) and
bir)=1for 0<7<1n b(r)=0for v > 1.

>From (16.61) by Gronwall’s lemma we find

Equation 3.134. (16.62)

Tll
u' ()% < ca +ca f eTi=*ds < const, t& (0,1})
0

Thus by (16.60) we obtain (16.55).

If £ € L*(0, oc; H) and ¢ > 0, we obtain from (16.59), similarly to (16.60)

Equation 3.135. (16.63)

1 9 1 N "
;”rr.’(t:l”], + ;<\er.(t], w(t)) —|—/ wlx)h{ut))de+

0
{ f f
F.f |:f |H.’(T]|2ff:r] dr < —':f | () || 5, d + C(E]f | () || 3 dr + &
0 02 1] 0
By (16.56) and (16.63) with sufficiently small = = 0, we obtain
i
()| 3;dT < const, ¢ € (0.0)
0
and so we obtain from (16.63) (16.55). Further, by (16.55)
[}
o (e + 2 [ 'l ar <
1]

with some positive constant «*. Thus by using Gronwall’s lemma we obtain

(7 < ¢t
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which implies (16.57).

Finally, if £ € L™ (0. >c: H) and & = 0, we have by (16.59), similarly to (16.63),

Equation 3.136. (16.64)

1 9 1 N "
;”rr.’(t:l”], + ;<\er.(t], w(t)) —|—/ wlx)h{ut))de+

02

‘ ‘
f {f t_.".‘l:.‘l")|H.F(’.":llgff.‘r:| dr < || F|| n= ,:[]_x._”:,f [l ()| dr <
0 LJfa i

i J'."‘12
const - £1/2 |:f ! (7)1 f?"."i| .
0

By using the notation

t
Y(t) =/ |’ (7)||3; d7. we have Y'(t) = |lu'(t)]|F;
0

and thus

Equation 3.137. (16.65)
Y'(t) +eaY (t) < est'2[Y (]2 + co

with constants ¢4. ¢s. cg > 0. Set z() = Y (£)/t, then from (16.65) we obtain
2'(t) + (f:; + %) 2(t) < es[2(8)]V2 + fTG

whence

2'(t) + euz(t) £ ffg[z(at)]lf"g + fTG < 31"-5[::(?&)]”2

if t = cseq = toand () = 1, Thus, assuming #(t) = 1, we obtain for ¢ > #g

Equation 3.138. (16.66)
2'(t) < dy|z()]? — daz(t) where dg > 0.

Inequality (16.66) implies that #(t) is bounded for ¢ > to because if 2(t) = (d1/d2)* then the
right hand side of (16.66) is negative, thus the nonnegative function z is decreasing.

Consequently, there is a constant «* such that
0<z(t) <", te (D) ie
i
o[ <
t Jo
and by (16.64) we have (16.58). o

Remark 16.9.

Assume that the conditions of Theorem 16.8 are fulfilled in the following form: there exist
F € H and v €V such that

144
XMLmind XSL-FO Converter



SECOND ORDER EVOLUTION
EQUATIONS

F—F. € L*(0.nc: H) and

Equation 3.139. (16.67)

e © V' is a solution of C_j'rr.x EN S

(Such = € V exists if @ is an elliptic operator with K = @, considered in Theorem 14.5)
Then (16.55) holds. Indeed, taking the difference of (16.59) and (16.67), we obtain (16.63)
with w = u — 1, instead of w (in the third term on the left hand side with ») and with
F — F. instead of .

Theorem 16.10.

Assume that the conditions of Theorem 16.8 are satisfied in the more general form,
formulated in Remark 16.9, i.e. there exists £ € H such that £ — Foc € L7(0. o¢: H) and
ti= is a solution of (16.67), i.e. Qu~ = ¥ Further,

Equation 3.140. (16.68)
tw(r:l = ¢ with a constant ¢ > 0.

Then for the solution « of (16.6), (16.7)

f[]x (7)) 7 < oc. dce. u' € L0, 0c: H)

and there exists wn € H such that

w(l) = wo in H as T — oc,  [u(T) —wollr < const 7.

Proof.

According to Theorem 16.8

Equation 3.141. (16.69)
u’(t)]| s < const e,

thus

Equation 3.142. (16.70)

=
f ||H."l:t:]||” dT < oo,
1]

Further, applying Theorem 6.6 to ©' = u(12) — u(11) (which is constant in ¢), we obtain by
using u'(t) € H

lu(22) = (L0l = (u(T2). u(le) — u(l1) — (u(l1), u(l2) —u(l1)) =

T2 T:
f (' (#), u(Ty) — u(11))dt = f (w' (1), w(d2) —u(1y))dt <

Ty T,
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Tz
||H.('l g:] — H.('l]:]”” f ||H."[?f)|| mt
T
which implies
Tz
[ (1) — w(ly)|| < f |l (£)]| 1z .
Ty

Hence by (16.70)

la(Ze) = a(LD)]lu — 0

as 11.12 — ¢, j.e. there is some wn € H such that
w(1) — wp in H as 1" — o

and by (16.69)

=

>
(1) — wl|ag = f [l (£)]] £r ddt < const f e " dt = const e 7.
T T
O

Theorem 16.11.

Assume that the conditions of Theorem 16.10 are satisfied, further, £’ € L*(0. 5c: H) h € €2
and 1" is bounded. Then

Equation 3.143. (16.71)
()i < const e, t€(0.0¢) and
u' € L=(0, 50; V).

Further, if limioc [F'(t) —Focllr =0 then for the function wo satisfying
1 . . - 2
litny o [|u(t) — wollm = 0 (see Theorem 16.10) we have with arbitrary X € V' 1 H=(£2)

Equation 3.144. (16.72)
f u-‘[]f_-j'm‘:r+f wle)h(uwg () ydx =f Fooxdr.
0 0

02

If Q is defined by

Qi T) = fﬂ [Z aji(x)(Dyit)(D;F) +d(:r)ﬁ.r~] dr

ai=1

(see Theorem 14.5) then equation (16.72) means that o is a weak (distributional) solution of

T

— Z Dyjlaj(e)Dywg| + olx)hfwg () = Fa

ai=1

(with some homogeneous boundary conditions).

Sketch of the proof.
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One applies the arguments in the proof of Theorem 16.4. Since i is bounded, the third term
on the left hand side of (16.51) can be estimated as follows

i
f [f ) (g (7))l (Tl (’.":]EFT.‘!':| dr
o e

f i f
2 2
const [t (D)l (< ¢ f luls (I + CGe) f ot ()] 3y

<

Choosing sufficiently small = = 0, we obtain from (16.51)
i
|l ()3, + r".“f ! (7)||3 dT < const, & (0, ).
0

Thus Gronwall’s lemma implies (16.71). Applying (16.6) to x € V' I H*(Q), we obtain
(16.72) ast — o, O

3.4. Problems

1.

Prove Theorem 16.6.

Prove Theorem 16.7.

Prove Theorem 16.11
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